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What we’ll learn in this lecture

Binary probabilistic models for IR

I P(R|d , q)

I Binary independence model



Probabilistic vs. geometric models

Fundamental calculations:

Geometric How similar sim(d , q) is document d to query q?

Probabilistic What probability P(R = 1|d , q) that d is relevant to q?



Probabilistic models

Probabilistic models:

I Clearer theoretical basis that geometric
I Particularly when considering extensions, modifications (think

of “pivoted DLN”)

I Very early theory (from 1970s)

I But only in 1990s did effective retrieval models develop

I Now, many probabilistic models

I This and next lecture, look at “classical” development up to
BM25

I Later, language models



Bayes theorem

Bayes’ theorem states:

P(A|B) =
P(B|A)

P(B)
· P(A) =

P(B|A)

P(B|A)P(A) + P(B|Ā))P(Ā)
· P(A)

E.G. M = have malaria; T = positive test; P(T |M) = 0.8;
P(T |M̄) = 0.01; P(M) = 0.001; what is P(M|T )?

P(M|T ) =
0.8 · 0.001

0.8 · 0.001 + 0.01 · 0.999

=
0.0008

0.0008 + 0.00999
= 0.074



Bayes theorem

P(A|B) =
P(B|A)

P(B)
· P(A)

I P(A) is the prior probability (distribution) of A

I We then observe evidence B

I P(B|A)/P(B) is support that B provides for A

I P(A|B) is posterior probability of A



Bayes theorem for relevance

P(R|d , q) =
P(d |R, q)

P(d |q)
· P(R|q) (1)

I P(R|q) can be understood as proportion of documents in
collection that are relevant to query

I P(d |R, q) is probability that a (retrieved) document relevant
to q looks like d

I P(d |q) = P(d |R, q)P(R|q) + P(d |R̄, q)P(R̄, q) is probability
of observing (retrieved) document, regardless of relevance

OK, but how do we go about estimating these values?



Rank-equivalence given query

Probability Ranking Principle (PRP)

I Assume output is ranking

I Further assume that relevance of documents is independence

I Then optimal ranking is by decreasing probability of relevance

I For ranking, we only care about
I Relative probability
I for given query

I This allows various simplifications Equation 1

I Provided they are monotonic

I i.e., for transformation f (),

P(A) > P(B)⇒ f (P(A)) > f (P(B))



Odds-based matching score

Take odds ratio between relevance and irrelevance:

O(R|d , q) =
P(R|d , q)

P(R̄|d , q)
=

P(R|q)P(d |R,q)
P(d |q)

P(R̄|q)P(d |R̄,q)
P(d |q)

=
P(R|q)

P(R̄|q)
· P(d |R, q)

P(d |R̄, q)

P(R|q)

P(R̄|q)
constant given query, so can ignore:

Õ(R|d , q) =
P(d |R, q)

P(d |R̄, q)
(2)

We have removed 2 of the 3 terms from Equation 1



Binary independence model

I How to estimate P(d |R, q) and P(d |R̄, q)?

I Must be based on attributes of d and q

Binary indendence model

Binary Doc attributes are presence of terms (not frequency)

Independence Term appearances independent given relevance

Represent:

I Document as binary vector ~d

I Query as binary vector ~q



BIM odds ratio

Under BIM, Equation (2) resolves to:

Õ(R|~d , ~q) =

|T |∏
t=1

P(dt |R, ~q)

P(dt |R̄, ~q)
=

∏
t:dt

P(dt |R, ~q)

P(dt |R̄, ~q)
·
∏
t:d̄t

P(d̄t |R, ~q)

P(d̄t |R̄, q)
(3)

Note similarity to Naive Bayes (if you know Naive Bayes).



Query terms only

Write:

pt = P(dt |R, q)

ut = P(dt |R̄, q)

Assume pt = ut when qt = 0 (non-query terms equally likely in
relevant as irrelevant documents). Then Equation 3 becomes:

Õ(R|~d , ~q) =
∏

t:dt∧qt

pt
ut
·

∏
t:d̄t∧qt

(1− pt)

(1− ut)

=
∏

t:dt∧qt

pt(1− ut)

ut(1− pt)
·
∏
t:qt

(1− pt)

(1− ut)
(4)



Query-doc matches only
Term

∏
t:qt

(1−pt)
(1−ut) in Equation (4) fixed for query, can be dropped

Õ(R|~d , ~q) =
∏

t:dt∧qt

pt(1− ut)

ut(1− pt)
(5)

Log transformation monotonic, changes products to sums, gives
log odds, which we take as matching score M:

M(d , q) = log Õ(R|~d , ~q) = log
∏

t:dt∧qt

pt(1− ut)

ut(1− pt)
(6)

=
∑

t:dt∧qt

log
pt

1− pt
+ log

1− ut
ut

(7)

Note that only terms occurring in both query and document
contribute to matching score. Weight of term t is:

wt = log
pt

1− pt
+ log

1− ut
ut

(8)



Assessement-time estimation

wt = log
pt

1− pt
+ log

1− ut
ut

(9)

I Equation for wt still depends upon random distribution
functions pt = P(dt |R, q) and ut = P(dt |R̄, q).

I Given assessed collection, pt and ut directly estimatable as
Bernoulli (“coin-flip”) distributions:

p̂t = 1/|R|
∑
d∈R

dt

ût = 1/|R′|
∑
d∈R′

dt

But R (of course) unknown at retreival time. How to estimate?



Retrieval-time estimation: ut

I Assume relevant documents rare

I Then collection statistics estimate ut :

log
1− ut
ut

≈ log
N − ft

ft
≈ log

N

ft
(10)

I Look familiar?



Retrieval-time estimation: pt

I Setting pt to 0.5 removes pt/(1− pt)
I Relevance score of doc is just sum of IDFs
I Plausible for binary model

I Empirical analysis1 suggests more accurate is:

pt =
1

3
+

2

3

ft
N

(11)

1Greiff, “A theory of term weighting”, SIGIR, 1998



Looking back and forward

Back

I Probabilistic IR models estimate
P(R|d , q) (or monotonic function
thereof)

I Probability derived from attributes
(term occurrences) of documents

I Binary independence model assumes:
I Binary attributes (term occurs or

doesn’t)
I Term occurrences independent



Looking back and forward

Forward

I Want to include term frequencies

I Two-Poisson model (next lecture)
does this, leading to BM25 metric

I Language models (later in course) an
alternative probabilistic IR framework



Further reading

I Chapter 11, “Probabilistic information retrieval”2, of Manning,
Raghavan, and Schutze, Introduction to Information Retrieval, CUP,
2009.

I Sparck Jones, Walker, and Robertson, “A Probabilistic MOdel of
Information Retrieval”, IPM, 2000.

2http://nlp.stanford.edu/IR-book/pdf/11prob.pdf
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