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ABSTRACT

The power of a statistical test specifies the sample size required to
reliably detect a given true effect. In IR evaluation, the power cor-
responds to the number of topics that are likely to be sufficient to
detect a certain degree of superiority of one system over another.
To predict the power of a test, one must estimate the variability
of the population being sampled from; here, of between-system
score deltas. This paper demonstrates that basing such an estima-
tion either on previous experience or on trial experiments leaves
wide margins of error. Iteratively adding more topics to the test set
until power is achieved is more efficient; however, we show that
it leads to a bias in favour of finding both power and significance.
A hybrid methodology is proposed, and the reporting requirements
of the experimenter using this methodology are laid out. We also
demonstrate that greater statistical power is achieved for the same
relevance assessment effort by evaluating a large number of topics
shallowly than a small number deeply.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and soft-
ware—performance evaluation.

General Terms

Experimentation, measurement.

Keywords

Retrieval experiment, evaluation, system measurement.

1. INTRODUCTION

The need to verify the statistical significance of results in infor-
mation retrieval (IR) experiments is well established within the IR
research community. Such statistical tests determine whether the
observed difference in performance between two IR systems is sig-
nificant, or whether it could have occurred by chance. However,
if the experiment fails to find significance, then one cannot sim-
ply conclude that no consequential difference exists. Instead, the
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experimenter wishes to know how large an actual difference in per-
formance could have been missed. Additionally, when designing
an IR experiment, the experimenter needs to decide how large a
test set is required to reliably detect the difference in performance
that the experimenter would regard as being consequential.

How small a real difference a statistical significance test can re-
liably detect is referred to as the statistical power of that test. The
IR experimenter is faced with the question of power when consid-
ering either using an existing test collection, such as one of those
produced by the TREC effort [Voorhees and Harman, 2005], or
purpose-building a new one. If a test collection of suitable content
already exists, the experimenter needs to determine whether the
collection contains enough topics for them to be confident of de-
tecting a consequential true difference between the systems, a de-
termination which can be guided by examination of the variability
of previous experimental results on that collection. If no suitable
test collection exists, or the existing ones do not contain enough
topics, then the experimenter needs to decide how many new topics
to include in the experiment to attain the desired power. Failure to
achieve the required experimental power can result in an unproduc-
tive experiment, one from which neither a positive nor a negative
conclusion can be drawn.

We examine three different methods of estimating the power of
a proposed experiment during design phase: (1) with reference to
past experience of similar experiments; (2) by performing a trial
experiment then a main one; and (3) by an iterative approach. We
demonstrate that the former two methods leave quite wide bounds
on power estimates, requiring the experimenter to deploy almost
twice as many topics in the design as will on average prove neces-
sary in execution. We also demonstrate that the iterative method,
while efficient, leads to a subtle bias towards overestimating both
power and statistical significance; the degree of this bias is em-
pirically estimated. The assessment-rich or fastidious researcher
will therefore wish to avoid iterative estimation. However, for re-
searchers who are assessment-scarce, we propose an experimental
methodology based on a hybrid of the three methods, including it-
eration. We also specify the details the researcher needs to declare
when reporting significance results arising from this methodology.

Finally, employing power analysis as our tool, we examine the
question of whether it is better, in a pairwise experiment with new
topics, to evaluate fewer topics deeply, or more topics shallowly.
Our results strongly indicate that the shallower evaluation of more
topics produces far greater experimental power than deep evalua-
tion of fewer topics for the same relevance assessment effort.

2. PREVIOUS WORK

The first author to empirically assess the usefulness of statisti-
cal significance tests in IR research was Zobel [1998]. He demon-



strates that significance findings on one half of a topic set are highly
likely to be confirmed by a same-signed difference in means on the
other half. For the ¢ test at significance level 0.05, the rate of con-
firmation is 0.97-0.98. Zobel finds the ¢ test to be more reliable
than the Wilcoxon and sign tests.

The Wilcoxon and sign tests are approximate non-parametric
significance tests, where precise score deltas are replaced by ranks
and signs respectively for computational simplicity. The growing
computational capacity of computers enables instead the employ-
ment of magnitude-aware nonparametric tests based on randomized
resampling. Savoy [1997] proposes the use of one such test in IR
research, evaluating the bootstrap on a handful of sample systems.
Sakai [2006] was the first to employ the bootstrap on a wide range
of systems, for the purpose of determining which evaluation met-
rics are more likely to lead to statistical significance. Smucker et al.
[2007] propose instead that the randomized permutation test should
be used, due to the minimal assumptions it imposes. Smucker et al.
compare the sign, Wilcoxon, ¢, bootstrap, and randomized permu-
tation tests, finding the first two unreliable, and the latter three to
give similar results in practice.

Voorhees and Buckley [2002] propose a measure called the error
rate, which is the likelihood that finding system a better than sys-
tem b on one randomly selected set of queries would be reversed on
another randomly selected set. Voorhees and Buckley calculate the
average error rate for different score deltas and topic set sizes across
historical TREC runs. The aim is to be able to conclude that a mean
AP delta of (say) 0.06 is 90% reliable on 50 topics. Unlike statis-
tical power analysis, this approach does not account for score delta
variability, and requires the assumption that the results of previous
TREC runs are applicable to new systems and collections. Sander-
son and Zobel [2005] incorporate statistical significance alongside
absolute deltas when calculating error rates.

Recently, interest has focused on methods of estimating metric
scores for a run without exhaustive (to a depth) assessment of docu-
ments returned by that run. Aslam et al. [2006] propose an unequal
sampling method for estimating AP and other metrics, where a doc-
ument’s probability of being judged is proportional to the weight
its rank has in the metric and an estimate of its prior probability
of relevance. Instead of estimating an absolute score for a run,
Carterette [2007] presents a method for estimating the probabil-
ity that one run has a positive score delta compared to another.
The documents judged are those that are likely to have the great-
est impact on these deltas, based on their probability of relevance.
Carterette proposes an “aggregation of expert opinions” model to
estimate each unjudged document’s probability of relevance. Buck-
ley and Voorhees [2004] examine the situation where an existing,
but incomplete, test collection is employed to assess a new system,
and propose a new metric called BPref to handle this situation. Yil-
maz and Aslam [2006] and Sakai [2007] present methods for es-
timating existing metrics with incomplete judgments. Moffat and
Zobel [2009] propose a metric, called rank-biased precision (RBP),
in which the degree of uncertainty due to incomplete judgment is
precisely quantified. Moffat et al. [2007] use this quantification to
target judgments towards achieving greater certainty for the scores
of well-performing systems. All such methods that attempt to esti-
mate a metric introduce a new form of variability in run scores and
score deltas which can be incorporated into a power analysis.

Cormack and Lynam [2007] define power as the probability that
true significance will be achieved, without specification of a hy-
pothesised true §. Using this definition, they empirically determine
the power of the ¢, Wilcoxon, and sign tests, finding the ¢ test to be
the most powerful (as well as the most reliable). Their definition
of power is somewhat different from the classical one, and cannot

be directly employed to measure the power of a test on a particular
system pair, either during experimental design or post-hoc.

Carterette and Smucker [2007] examine statistical hypothesis test-
ing in the presence of uncertainty about system scores on individual
runs, particularly as it relates to the delta AP measure, described
in Carterette [2007]. The significance test they deploy is the sign
test. They provide an introduction to power analysis for this test.
The detectable effect size is specified in terms of the proportion of
topics one system outperforms the other on, not in terms of abso-
lute metric difference This is similar to defining effect size in terms
of the ratio of delta to standard deviation in paired ¢ tests, as we
consider in Section 3.3. With effect size so defined, problems of
design-phase variability estimation fall away; however, this may
not be the form in which the experimenter wishes to define effect.
The sign test has been found by a number of researchers [Zobel,
1998, Smucker et al., 2007] to be the least reliable of the hypothe-
sis tests. We instead examine the ¢ test, and consider the case where
the experimenter wishes to specify effect in absolute terms of the
IR evaluation metric employed.

Carterette and Smucker consider the trade-off between assessing
a smaller number of topics to certainty, or a larger number with
a residual uncertainty as to true delta signedness, and conclude
that shallow evaluation of more topics gives stronger power for the
same effort, which we corroborate (under slightly different assump-
tions) for the ¢ test in Section 6. Carterette et al. [2008] investigate
the tradeoff between breadth and depth for score estimation on the
TREC 2007 Million Query Track.

3. POWER AND EFFECT
3.1 Hypothesis testing

IR systems are evaluated and compared using a test collection,
consisting of a document corpus and a set of fopics. A topic is a
user information need, often with an explicit description, which is
formulated as a guery and run by each IR system. A topic also in-
cludes human judgments as to which documents in the collection
are relevant to that topic. These judgments may have been made
prior to the experiment, or else they may be made after the experi-
ment has been run, by judging the documents returned by the sys-
tems being evaluated. Let the set of n topics be T = {t1,- -+ ,tn }.

Consider two IR systems, a and b, that are to be evaluated and
compared using the test collection. Each IR system indexes the
corpus, then runs the topics formulated as queries, and for each
topic produces a ranked run of documents that it considers relevant
for that topic. The documents are marked for relevance using the
judgments for the topic, and a metric is used to produce a score
for the run. Let the metric score that system a achieves on topic ¢
be denoted as m,,. The aggregate or mean score m, for system
a is then Y, ma,¢/n, and similarly for system b. The difference
between means, m, — My, we denote as d, , or simply d. It repre-
sents the observed delta between the systems. For each topic ¢, the
per-topic delta d; = ma,s — msp,.. Of course, d = >, di/n.

Having observed dq, > 0 (informally, a > b), we can con-
clude that system a has outperformed system b on topic set 7°, at
least under the metric employed. However, before rushing to print,
we must verify that this observed improvement represents a real
difference between the two systems, as it may have occurred by
chance. We assume that the set of test topics 7" has been randomly
sampled from the full population of topics 7, however that popula-
tion is conceived. Therefore, the observed set of score differences
D = {di,- - ,dn} between systems a and b is randomly sampled
from the population of score differences D between the two sys-
tems. The frue delta, §, between the systems is the mean of the



population of deltas, § = D. Testing for significance involves for-
mulating a null hypothesis Hq that the two systems have in fact
identical effectiveness, that is, that § = 0, and then determining the
probability p that the observed difference d or greater could have
occurred by chance if this hypothesis were true. If p is below some
predetermined significance level o (where o« = 0.05 is a common
choice), then Hy is rejected, and the alternative hypothesis that the
two systems are not equivalent is accepted.

Several hypothesis tests are available to the researcher; here we
focus on the ¢ test. The ¢ test is applied by matching the observed
outcome against quantiles of the ¢ distribution, the sampling dis-
tribution of the mean of a normally distributed variable. If the
sample size is large enough (greater than 25 is one conventional
watershed), then the ¢ test can be employed even if it is not known
whether the underlying population is normally distributed, by in-
voking the Central Limit Theorem (CLT). In a one-tailed, paired
t test on topic score deltas, where the number of topics is n, the
mean delta is d, and the sample standard deviation of deltas is s,
we calculate the ¢ statistic:

t = _d 1)
s/v/n—1
and check whether this statistic is greater than the 1 — « quantile
of the ¢ distribution with n — 1 degrees of freedom.

Recent work [Sakai, 2006, Smucker et al., 2007] has suggested
that the bootstrap or the randomized permutation test should be pre-
ferred to the ¢ test due to the less stringent assumptions they make
about the underlying distribution of the data. However, Smucker
et al. [2007] find that the ¢, randomized permutation, and bootstrap
tests in practice give very similar results, at least on TREC data
with 50-topic sets. The randomized permutation test makes no as-
sumptions about underlying population distributions or true deltas,
and therefore does not provide the theoretical framework for power
analysis. The bootstrap test takes the distribution of the sample
(possibly with its mean shifted) as the best estimate of the distribu-
tion of the underlying population, and resamples with replacement
from the sample to simulate sampling from the population. Boot-
strapping is well suited to post-hoc calculation of power; see Efron
and Tibshirani [1993, chapter 25] for more details. However, it is
problematic for design-phase power estimation, as at design phase
there is no sample to bootstrap from.

3.2 Power

Consider a typical scenario when an experimenter is comparing
anew system a against a baseline system b. The experimenter runs
the experiment, and finds a > b, but the result is not statistically
significant. What conclusion can the experimenter draw? Post-hoc
power analysis addresses the question of sensitivity. It indicates
whether the test should reliably have detected a § that the experi-
menter regards as consequential. If the test should have, but didn’t,
then the experimenter can conclude that there was no substantial
effect, and try something else. (Similar conclusions can be drawn
from an examination of the test’s confidence interval [Hoenig and
Heisey, 2001]). However, if the test neither finds significance, nor
turns out to have been powerful enough to reliably detect a con-
sequential delta, then the result is indeterminate and the value of
the new method is unknown. An inconclusive experiment is all the
more serious because the regimen of statistical hypothesis testing
does not simply allow the experiment to be repeated with new top-
ics, as finding significance on a second test is suspect if the test has
occurred because of a failure to find significance on the first one.

In hypothesis testing, the parameter o allows the experimenter
to control the risk of falsely finding a significant difference when

no difference in fact exists, what is known as a Type [ error. The
converse risk, of failing to reject the null hypothesis when a dif-
ference between the systems does in fact exist, is termed a Type 11
error, and the probability of it occurring is denoted by (. To derive
a value for (3, one must in general posit a specific alternative hy-
pothesis H,, for instance, that the true § between systems (under
whatever metric is employed) is 0.07. Additionally, 5 depends on
« (the smaller «, the greater 3), the variability of the underlying
population, and the size of the sample. We may also consider the
probability of correctly rejecting the null hypothesis when H, is
true, namely 1 — (3. This value is the power of the statistical test.
Informally, it expresses the test’s ability to detect real differences.
For more details, see Cohen [1988] and Hays [1991, chapter 7].

Both the significance level « to set and the power 1 — 3 to seek
are at the experimental designer’s discretion. A conventional value
of ais 0.05, and a typical value of 3 is 0.2, giving power 0.8. These
settings imply that the designer regards a false positive as being
four times as serious as a false negative; the designer is willing to
accept a 20% risk of missing a consequential effect if it is there,
but only a 5% risk of finding a significant difference that does not
exist.

In design-phase power analysis, the crucial question is, will the
proposed experiment have sufficient power to reliably detect the
predicted (or a consequential) effect? The main variable under the
experimenter’s control to try to ensure this outcome is the sample
size of the proposed experiment. However, to perform the calcu-
lation, the experimenter must also have a reliable estimate of the
variability of the sampled population. The greater the variability,
the more likely it is to obscure any real difference between systems,
regardless of the hypothesis test employed, and hence the larger the
sample size that will be required to detect a given true difference.

The formula for computing statistical power depends on the sta-
tistical test that is to be invoked. The power of a one-sided paired
t test, using the normal approximation, is given by:

pzq»(ﬁ.g_zl,a) @

where o is the standard deviation of the underlying population,
Z1—q 18 the 1 — « quantile of the normal cumulative density func-
tion or CDF (for instance, 1.644 for « = 0.05), and & is the nor-
mal CDF, a monotonically increasing function. To maintain the
same power (to keep the left term in the parentheses in Equation 2
constant) while halving the detectable delta, or handling twice the
standard deviation, requires quadrupling the sample size.

The main practical problem facing the experimental designer
when attempting to predict statistical power using a formula like
Equation 2 is to estimate o, the standard deviation of the popula-
tion being sampled. In post-hoc analysis, o is estimated directly
from the observed standard deviation s of the sample, but, when
designing the experiment, the sample does not yet exist. For some
experiments, the standard deviation of the population is known or
can be estimated. For instance, if the experiment is to measure the
survival time of mice after a certain treatment, then the standard
deviation of the longevity of mice is likely already known. How-
ever, the population standard deviation o in differences in per-topic
(say) AP scores between IR systems is not known. Estimating o is
the main subject of this paper.

3.3 Effect size

So far, the (minimum) effect that the experiment is attempting
to detect has been defined in terms of an absolute ¢, in units of
whatever the evaluation metric being employed is; for instance, the
researcher wishes to reliably detect a true AP improvement of 0.07



of the experimental over the baseline system. Calculating ¢ test
power in terms of an absolute effect then requires an estimate of
the population’s standard deviation, o.

An alternative way to quantify the effect that the experimenter
predicts or wishes to detect is in terms of effect size (ES) [Cohen,
1988]. There are several ways to specify ES, but the simplest is:

ES = 9 (3)
o

that is, ES is a true delta normalized by the population’s stan-
dard deviation. Effect size is a unitless metric, or rather, the unit
is in standard deviations, applicable to any experimental popula-
tion. The concept is similar to that of standardized metrics [ Webber
et al., 2008]. It is even possible to generalize ES strengths. Cohen
[1988], for instance, proposes that an ES of 0.8 represents a large,
0.5 a medium, and 0.2 a small effect. These are rough categories,
and Cohen himself gives several cautionary examples. Neverthe-
less, they illustrate the benefits of moving to a unitless metric.

Predicting effect in terms of ES as defined in Equation 3 has a
particular advantage when calculating the power of a ¢ test. Equa-
tion 2 shows that ¢ test power is constant (under the normal ap-
proximation) for a given ES and number of topics. Having spec-
ified topic set size, power, and «, ES is also fixed. One can say,
for instance, that, using the typical 50-topic TREC test collection,
a two-tailed ¢ test with @ = 0.05 can detect an ES of 0.40 with
power 0.8, regardless of the metric employed. In other words, us-
ing Cohen’s categorizations, 50-topic TREC collections can reli-
ably detect medium effects, but not small ones. Additionally, if
effect can be specified in terms of ES, then it is not necessary to es-
timate population standard deviation in order to predict test power
during experimental design, as standard deviation is already incor-
porated into ES.

The question is then whether it is meaningful for experimenters
to specify predicted or consequential effect in terms of ES. Part of
the answer lies in recognising that there are two sources of vari-
ability in topic score deltas: intrinsic variability in system perfor-
mance, and extrinsic variability from the experimental setup. In-
trinsic variability refers to the consistency of the experimental sys-
tem’s improvement over the baseline system. For the same J, the
experimental system could marginally outperform the baseline on
all topics, or marginally underperform on most but significantly
outperform on a few. Specifying ES instead of absolute effect can
account for intrinsic variability when the experimenter cares about
consistency of improvement rather than raw magnitude. Extrinsic
variability refers to numerous elements of variability in the experi-
mental setup. The experimenter will not want to simply incorporate
such extrinsic variability into the specified ES, but rather wants to
see through this variability to the true underlying difference.

In this paper, we assume that the researcher is quantifying ef-
fect in absolute terms, and therefore needs to estimate population
standard deviation during the experimental design phase.

4. EXPERIMENTAL TOOLS AND DATA

The experimental data for this paper is drawn from the TREC
test collections and the systems officially submitted to the TREC
experiments. A test collection and the runs submitted to the track
the collection was developed for will be termed a fest set. The main
test set used here is from the Robust Track of TREC 2004. The test
collection contains 249 topics: Topics 301-450 from the AdHoc
tracks of TREC-6, TREC-7, and TREC-8; Topics 601-650 from
the TREC 2003 Robust Track; and Topics 651-700 newly created
for the 2004 track (one of which was dropped as returning no rel-
evant documents). Here, we only use Topics 301-450, in order to

improve topic homogeneity; the Robust topics had smaller pools
and so smaller estimates of the number of relevant documents R.
A total of 110 systems were submitted to the Track. Of these, we
exclude the 32 description-only runs. The TREC-6 topics have a
peculiarity where for most topics the description is lacking one
or more topic keywords from the title, leading to highly variable
performance by description-only runs. Note that the methods de-
scribed here were initially developed using the TREC-8 AdHoc test
set, with similar experimental results.

A system’s run against a topic is scored using an IR evaluation
metric, a function mapping a vector of (binary or graded) relevan-
cies to a single score. One of the most widely used metrics, and the
one employed in this paper, is average precision (AP). Average pre-
cision is most easily described by building it up from its constituent
parts. The precision of a run at depth d is the proportion of the first
d documents in the run that are (binary) relevant. The sum of pre-
cisions (SP) adds up the precision at every position that a relevant
document is returned in a run. Then SP is normalized to create AP
by dividing by the total number of (known) relevant documents, R.
The value of R is determined either by exhaustive assessment of the
document corpus; or, more practically, as the number of relevant
documents returned by a set of experimental systems run against
the test collection when the collection was formed, as in a TREC
experiment; or finally, in an experiment using new topics, as the
number of relevant documents found in performing assessment for
that experiment. An AP score ranges from 0 to 1, with 0 mean-
ing no relevant documents were returned, and 1 meaning all known
relevant documents were returned at the head of the run.

S. ESTIMATING DELTA DEVIATION

There are several ways in which the IR experimental designer
can attempt to estimate o, the standard deviation of score deltas for
a planned experiment. One is to base the estimate on past experi-
ence. Another is to undertake a pilot experiment on a small number
of topics before proceeding to the main experiment. And a third
is to iteratively increase the sample size, updating the estimation at
each iteration.

5.1 Based on previous experience

An experimenter might estimate expected population delta stan-
dard deviation based on previous experience. What constitutes pre-
vious experience is difficult to precisely quantify. A simple ap-
proach is to examine the standard deviations observed in past exper-
iments for the selected metric, such as AP delta standard deviations
in TREC experiments. The problem is that there is no single dis-
tribution of AP score deltas that applies to all system pairs, and the
range of standard deviations across different system pairs is broad.

The 78 systems in the Robust test set form 3003 system pairs.
Each system pair produces a set of AP score deltas across the 150
test topics. Figure 1 shows the distribution of standard deviations of
these 3003 sets of system pair AP score deltas. The mean is 0.15,
and the 95th percentile is 0.19. The first thing that Figure 1 indi-
cates is that there is no single population of AP score deltas which
all system pair deltas are drawn from. Bootstrapping indicates that
a population of AP scores with a 0 = 0.15 under i.i.d. sampling
would give a 95% interval on sample standard deviation of around
0.12 to 0.18 for a sample size of 150 topics, whereas the 95% inter-
val here is 0.07 to 0.20, more than twice as broad. Thus, the deltas
between each pair of systems constitute a distinct population, and
the o of each such population must be separately estimated.

Past experience does not, therefore, specify a single o of AP
score deltas. Let us imagine instead that the experimental designer
had available to them experience equivalent to knowing that the
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Figure 1: Density of standard deviations of between-system per-topic AP
score deltas, for the TREC 2004 Robust Track runs.

two experimental systems were drawn from the Robust test set. In
this case, the o of their population of AP score deltas could be
estimated at 0.15; this is only an estimate, as we know from the
previous paragraph that each system pair is drawn from a distinct
population and therefore has a distinct o. The size of the true §
that the experimenter might be trying to detect will vary. A rea-
sonable figure for trying to improve upon an established baseline is
the size of the difference between the mean of the second quartile
system AP scores and the mean of the first quartile, which for the
test set is 0.033. To have power 0.8 given o = 0.15 on § = 0.033
requires 164 topics. One notes immediately that the traditional 50-
topic TREC collection is inadequate to reliably detect such a true
difference. That is, an experiment should contain at least 150 topics
if a typical top-quartile system is to be reliably distinguished from
a typical second-quartile baseline.

Taking the estimate of o as the average given by past experience
means that there is a roughly 50% chance that the post-hoc analy-
sis will show the experiment to have failed to achieve the desired
power, even if past experience is a reliable guide. This is because
the standard deviation of the actual sample has a 50% chance of
being higher than the estimate. To be confident of achieving power,
one should take a higher percentile of the empirical distribution of
standard deviations. A conventional confidence level is 95%, which
in our example would require taking the 95th percentile of 0.19,
requiring 262 topics to reliably detect the ¢ in question. And, con-
versely, post-hoc analysis in the average case would demonstrate
that this was roughly 100 topics more than was required to achieve
the desired power. That is, on average, the standard deviation of the
actual sample will turn out to be the empirical mean, and sufficient
power would have been achieved with 164 topics.

Table 1 gives mean and 95th percentiles on AP delta standard
deviations for several other TREC test sets. There is considerable
variability in means and upper percentiles between test sets, with
the means of some being close to the upper percentiles of others.
This shows that, even in the restricted domain of TREC experi-
ments, previous experience is an imperfect guide. In each case,
the 95th percentile standard deviation is 25% to 40% more than
the mean, leading under Equation 2 to 60% to 100% more topics
than in the mean case, and therefore on average the same percent-
age more topics assessed than post-hoc analysis will show to have
been necessary. Table 1 also gives the minimum AP differences
detectable with power 0.8 using 50 topics with the mean and 95th
percentile standard deviations. These suggest that the standard 50
topic TREC collection can only be relied on to detect true AP deltas
in the range 0.06-0.08.

AP delta o Detectable §

Mean 95% Mean 95%
TREC-3 AdHoc 0.144  0.198 0.058 0.080
TREC-4 AdHoc 0.171  0.220 0.069 0.089
TREC-5 AdHoc 0.170 0.241 0.069 0.097
TREC-6 AdHoc 0.196 0.259 0.079 0.105
TREC-7 AdHoc 0.152  0.207 0.061 0.084
TREC-8 AdHoc 0.160 0.226 0.065 0.091

Test Set

TREC-9 Web 0.167 0.225 0.067 0.091
TREC2001 Web 0.143  0.202 0.058 0.081
TREC2004 TB 0.131 0.185 0.053 0.075
TREC2005 TB 0.142  0.191 0.057 0.077
Average 0.157 0.215 0.064  0.087

Table 1: Mean and 95th percentile of standard deviation of per-topic,
between-system AP score deltas, for different TREC tracks, and delta de-
tectable with power 0.8 using 50 topics for these standard deviations.

Of course, what has been presented here is only a rough simu-
lation of the background knowledge that might be available to the
experimental designer in attempting to estimate delta standard de-
viation. The designer may be aware, for instance, that the experi-
mental system is a minor modification of the baseline one. In this
case, one might anticipate lesser variability in score deltas. At the
same time, however, one might be looking for a smaller absolute
effect. In any case, the basic problem remains: there is no single
population of AP score deltas, and therefore no single o; past expe-
rience gives quite wide margins of error; and accounting for these
margins by taking conservative estimates is expensive.

5.2 Based on trial experiments

The standard deviation of a population of score deltas can be es-
timated by use of trial experiments. In a trial experiment, a number
of topics are sampled and assessed, and an estimation of standard
deviation is made from this sample. This estimation is then used
to determine the sample size for the main experiment. The trial
topics should then be discarded, and an entirely new experimen-
tal set sampled anew; including the trial topics in the experimental
set leads to a bias similar to that discussed ahead in Section 5.3.
The experimenter might also make use of the trial experiment to
determine the § to detect, and possibly as a basis to abandon the
experiment if the experimental system seems clearly worse than
the baseline one.

When designing a trial experiment, one must consider, first, how
many topics to include in the trial, and second, how to use the es-
timate of standard deviation derived. Considering the second ques-
tion, the trial experiment only provides an estimate of standard de-
viation, and this estimate could have a wide confidence interval. As
with estimates based on past experience, if the experimenter simply
takes the mean as their estimate, then there is roughly a 50% chance
that the true standard deviation will be higher than this. To avoid
this outcome, the experimenter might choose to take an estimate
from a higher percentile of the distribution; however, the higher
the percentile, the more expensive the subsequent experiment will
become.

The sampling distribution of the standard deviation of a normal
population is itself normal, and has standard error of:

o5 =——. “

In practice, metric deltas are not normally distributed, and AP deltas
in particular are often highly skewed. Figure 2 shows the theoret-
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Figure 3: Total number of topics assessed following trial experiments
of different sizes showing sample standard deviations of different values,
where the final experiment requires power of at least 0.8 on § = 0.033 at
a = 0.05, with 95% confidence.

ical 95% confidence intervals given by Equation 4 under assumed
normality, and the empirical quantiles on the TREC2004 Robust
Track systems, for samples of 30 topics, indicating that the for-
mula underestimates the variance of the estimator. Nevertheless,
Equation 4 is useful to inform our discussion. Assume a trial ex-
periment using 30 topics, producing an observed standard deviation
of 0.15. The upper end of the one-tailed 95% confidence interval is
then 0.183. If the experimenter required a power of 0.8 for a true
delta of 0.033, then the standard deviation estimate of 0.15 would
call for a topic set size of 164 topics, but there would be an even-
money chance that the experiment would not achieve the desired
power. On the other hand, the experimenter could take the upper
end of the confidence interval at 0.183 and be confident of achiev-
ing the desired power. But this would require a topic set size of 243
topics, in addition to the 30 topics spent on the trial experiment.
Decreasing the width of the confidence interval on &, and there-
fore the size of the full experiment, can be achieved by including
more topics in the trial experiment. However, from Equation 4, the
expense is quadratic: halving the width of the confidence interval
requires quadrupling the size of the trial, and after a while the extra
size of the trial experiment is not justified by the savings in the full
experiment. Figure 3 shows the full number of topics that need to
be assessed in a moderately stringent experimental setup based on
the trial experiment approach, for different trial experiment sizes
finding different estimates of standard deviation. The optimal trial
size itself depends on the standard deviation of the population — a

circular problem. In any case, for each actual standard deviation,
the minimum full (trial plus experimental) topic set size needed for
confidence in achieving post-hoc power is 60% to 80% greater than
that needed in the actual average case.

The trial method therefore has efficiency roughly equivalent to
the basing of estimates on previous experience. The advantages
are, first, that it requires no previous experience, and is not misled
if previous experience turns out to be unreliable; and second, the
trial can yield useful information, before proceeding (or not) to the
full experiment.

5.3 Based on iterative estimation

In many fields of research, an experiment must be performed all
at once; it is not possible, for practical or theoretical reasons, to
iteratively add new subjects to the sample if the current set proves
not to be large enough. However, IR research does not appear to
be under such a constraint, at least when testing a limited number
of implemented systems under the experimenter’s control. Specif-
ically, when calculating a test’s power, if the number of topics ini-
tially chosen turns out not to provide adequate power because the
standard deviation of the sample (and hence, by inference, of the
population) is higher than expected, then it would seem that one
could just add more topics. Such an experimental methodology is
described in Algorithm 1. After each topic has been sampled and
evaluated, and the two systems scored, we can check to see whether
the desired power has been reached. If it has, we stop, and perform
the significance test. If not, we sample another topic. In practice
one would start with at least the minimum sample size reliably sup-
ported by the significance test employed.

The great advantage of the method presented in Algorithm 1 is
that no assessment effort is wasted: the desired experimental power
is precisely achieved with the minimum number of topics compati-
ble with random sampling. This is in contrast to the previous meth-
ods, which attempt to estimate the standard deviation in advance,
and then judge precisely that many topics. Such methods, conser-
vatively employed, typically assess as much as twice as many top-
ics as post-hoc prove necessary for the desired power. In addition,
the iterative approach is guaranteed to achieve the desired power,
whereas the estimate-then-sample approaches still allow a chance
that the desired power is not achieved.

It would be a seriously flawed methodology to employ Algo-
rithm 1 but additionally to check for significance after adding each
topic, and stop when significance is found. Take the 137 Robust
system pairs with an observed p value between 0.05 and 0.10 on
Topics 301-450, that is, pairs that are close to but not achieving
significance at level o = 0.05. If significance is checked after ev-
ery topic subset size from 50 topics up to 150, then on one random
trial almost two thirds (89) of these systems pairs were found sig-
nificant at level a« = 0.05 for at least one topic set size. That is, the
possibility of false positives is greatly increased by such repeated
testing. Thus, in any iterative approach, the stopping condition has
to be specified in advance, independent of findings of significance,
and strictly adhered to. It would seem, however, to be allowable

Algorithm 1 Iterative sampling

Input: §, the target detectable true delta
d—oo, T —{}
while d > ¢ do
T — T U {sample(T)}
d « calcDetect(T")
end while
Perform significance test
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Figure 4: Probability of inclusion against per-topic delta for Topics 301
450 comparing fub04Tge and polyutpl from the TREC 2004 Robust
Track, as averaged over 20,000 random trials. Each trial iteratively samples
topics without replacement until a test power of 0.8 for a true delta of 0.06
is achieved.

to abandon the experiment early if it became clear that significance
was not going to be achieved; that issue will not be pursued here.

Testing significance after each topic is clearly wrong; but re-
estimating population standard deviation, and from that test power,
either after each topic as described in Algorithm 1, or at certain
intervals, might not on the surface seem to suffer from the same
problems. However, iteratively re-estimating o and hence power
leads to its own, more subtle form of bias. The problem is that sam-
pled sequences that have a lower observed standard deviation will
lead to smaller subsets than those with a higher one, as they will
achieve the desired power sooner. This means that the probability
of inclusion (that is, the probability that a topic is in the sampled
set at the time the sampling concludes with a “powerful enough”
set of topics) will be higher for topics whose score delta is more
typical of the population than it will be for topics with non-typical
score deltas, even though the sampling probability is uniform.

Figure 4 illustrates the inclusion bias arising from iterative power
calculation when seeking to compare two particular TREC 2004
Robust Track systems. Different topics have significantly different
chances of being included in an iteratively sampled topic set. Those
topics whose score deltas are more typical of the sample have a
higher likelihood of inclusion, whereas atypical topics have a much
lower one.

The effect of the inclusion bias towards topics with typical deltas
is to underestimate the standard deviation of the population. The
extent of this bias depends on the distribution of the underlying
population, and this distribution differs for every system pair. For
a given system pair, the bias can be experimentally estimated, but
only post-hoc, after true random sampling. Assume that the distri-
bution of the population D is identical to that observed in the sam-
ple D. That is, every d € D takes on one of the values observed
in D with equal probability. This is the fundamental assumption
made in bootstrap statistical testing. The justification is that, al-
though the true population distribution will not be identical to that
of the sample, the sample is nevertheless (absent other information)
the most likely estimate of the true distribution. Under the assump-
tion that D is distributed according to D, the population standard
deviation op is known, as it is by definition the same as the sample
standard deviation o p. Then the iterative sampling strategy can be
simulated on D by sampling with replacement from D, stopping at
some sample D’ of m topics when the desired delta J is detectable
with power 0.8 given the observed sample standard deviation sp-.
We set § to the value properly detectable after 100 topics, given
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Figure 5: Mean standard deviation estimates using the iterative sampling
method compared to actual standard deviation, for AP score deltas between
100 baseline and experimental system pairs drawn from the TREC2004 Ro-
bust Track systems, on Topics 301-450. The dotted line is the line of best
fit, which has slope 0.965, and root mean squared residual of 0.0028.

op. The stopping sps will be our estimate of op. Then, sps can
be compared against op. Repeating this procedure will give us
distributions of estimates of op from the iterative approach, and
indicate the bias of the estimator.

The intended scenario is of experimenters trying to improve on a
good baseline system. For the baseline system in each experiment,
therefore, we randomly select one of the systems from the second
quartile of runs. The experimental system is randomly selected
from the top three quartiles of runs; we assume that truly poor,
fourth quartile systems have been weaned out by earlier testing.

To illustrate the method, take a random baseline-experimental
system pair from the TREC 2004 Robust experimental set, with
fub04Tg as the baseline system b and pircRBO4t1 as the experi-
mental system a. The mean delta between a and b on Topics 301—
450 is 0.036, a > b, and the standard deviation is 0.128. We set
the delta we want to detect as the delta detectable with power 0.8
on 100 topics from the real population; this happens to be 0.036 as
well. We then run 1,000 repeats of the iterative sampling approach
until the desired power is reached. The iterative method takes an
average of 95 topics to achieve the desired power, instead of the
true 100, and the mean estimate of population standard deviation is
0.123, instead of the true value of 0.128. However, the mean of the
delta means is correctly estimated at 0.036. Also, while the distri-
bution of mean estimates is very close to normal, that of standard
deviation estimates is noticeably non-normal, with a fat lower tail
of low standard deviation estimates.

Figure 5 displays the mean standard deviation estimates, across
1,000 trials each, for 100 randomly selected baseline-experimental
system pairs. The mean estimate of standard deviation arrived at
using the iterative sampling method is consistently below the actual
value, making this a biased estimator. The standard deviations are
on average underestimated by 3.5% for this data set. Reducing
the frequency at which power is retested only decreases the bias
slightly; adding 40 topics per iteration to the topic set rather than
just 1 leads to an average underestimate of 2.8%. The estimates of
the mean (not shown) are unbiased.

Underestimating standard deviation but fairly estimating mean
delta biases the iterative sampling method towards creating topic
sets with more apparent power and a higher likelihood of finding
statistical significance than would topic sets of the same size gener-
ated by pure random sampling. That this leads iterative sampling to
higher rates of false positives in significance testing (finding signif-
icance where none exists) can be empirically demonstrated. As pre-



viously, take the observed distribution D of deltas for a pair of sys-
tems as the population distribution, but first shift it so that the mean
of D is zero. Doing this creates the null hypothesis of paired two-
tailed significance testing, that is, a population D of deltas with true
mean zero. Any finding of significance on a sample drawn from this
population is therefore by definition a false positive. Then, sample
with replacement from D using the iterative sampling method un-
til the desired power is achieved. Iterative sampling is repeated
multiple times, and the proportion of iteratively sampled topic sets
which find significance is recorded. Finally, true random sampling
is performed, using the same topic set sizes as observed in iterative
sampling, and the proportion of randomly sampled topic sets which
find significance is recorded. This gives us the false positive rates
for the random and iterative sampling methods on this sample of
populations and topic set sizes.

Figure 6 displays the false positive rates for the iterative and ran-
dom sampling methods, for 25 experimental and baseline system
pairs. Here, the desired power is set, oracle-like, to that achievable
after 80 topics given op, and the initial sample size for iterative
sampling is 40, to satisfy the requirements of the t test on non-
normal data. The mean false positive rate for true random sampling
is 0.0507, roughly as expected for a significance level a = 0.05.
The mean false positive rate of the iterative method is 0.0540, some
7% higher. Additionally, the iterative method gives a higher false
positive rate for 19 of the 25 populations. A two-tailed paired
Wilcoxon test finds these differences significant at level 0.005.

The two rightmost points on Figure 6 merit further consideration.
The higher one, where both random and iterative sampling produce
high false positive rates, is for a population derived from a pair of
systems from the same research group. The characteristic of this
system pair is that they achieve similar scores on most topics, but
one system outperforms the other markedly on a couple of topics.
This reflects a common experimental situation, in which a baseline
system is modified in a way that may only be evident on a few top-
ics. Zero-centered, this creates a population of many small, mostly
negative values and a couple of big, positive ones. Failing to sam-
ple the large values happens readily, whichever sampling method is
used, and leads to misleading consistency and hence significance.
The problem here is not with employing the ¢ test, but with sam-
pling itself: extreme values can be missed. Even with a sample size
of 150, true random sampling still produces a 6% false positive
rate. The lower of the rightmost two points in Figure 6, in contrast,
is from a relatively symmetric but fat-tailed population. True ran-
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Figure 6: Proportion of false significance readings for iteratively sampled
topics compared to randomly sampled topics, across 25 populations derived
from randomly sampled system pairs from the TREC2004 AdHoc Track,
shifted to a mean delta of 0, with 5,000 samples per pair.

dom sampling is not bothered by this, but iterative sampling’s bias
towards including typical deltas leads to a high false-positive rate.

The iterative estimation method, therefore, while efficient in its
use of topics and easy to implement, leads to a bias in favour of
both experimental power and finding significance. Our experiments
indicate that the bias is slight, but do not provide a general adjust-
ment factor for it. Nevertheless, the pragmatic researcher may be
prepared to use this method and note that p values produced in sig-
nificance tests may be biased marginally downwards.

5.4 Suggested methodology

Faced with a pair of systems to evaluate on new topics, a re-
searcher rich in relevance assessment resources and armed either
with strong previous experience or the results of a trial experiment
can proceed to make a single, conservative estimate of o and assess
the full (and generally large) set of topics necessary to be confi-
dent of achieving the desired power. A poorer but theoretically
fastidious and temperamentally stoic researcher might take an av-
erage estimate and risk variability turning out to exceed that and
rendering the experiment inconclusive (and, for the scrupulous, un-
repeatable). Or the researcher might abandon absolute measures
and express consequential effect in terms of effect size, with its at-
tendant limitations and vagueness. Any of these approaches will
enable the statistical significance of the experiment’s results to be
tested and reported with the minimum of caveats.

However, for a researcher with scarce assessment resources who
wishes to quantify consequential effect in absolute terms and is
(understandably) unwilling to risk an inconclusive experiment, we
suggest a hybrid approach. The predicted or consequential § must
be stated at the outset. An initial best (non-conservative) estimate
of o should be made, either through experience and a judgment of
the likely similarity of the two systems, or using a trial experiment.
The indicated number of topics should then be assessed, and the
systems evaluated. If desired power has not been achieved, then o
should be re-estimated as the observed sample standard deviation,
and the indicated number of additional topics assessed and evalu-
ated. (Observed standard deviation is likely to be an overestimate
of population o, since the only reason we are observing it is that it
is higher, possibly by chance, than our initial estimate; however, a
slightly conservative estimate here is aesthetically desirable to re-
duce the number of iterations.) This process is repeated until power
is achieved. Then, and only then, significance can be tested for.

The proposed methodology is assessment-thrifty and guaranteed
to obtain the desired power. The downside is that the reported
significance is likely to be slightly exaggerated. Naturally, the re-
searcher needs to report this fact, and also that the exact degree of
bias is uncertain. The researcher also needs to state the experimen-
tal methodology employed, including the § used to calculate power,
the initial topic set size, and the number of iterations. This must be
reported even if power is achieved by the initial topic set, with-
out the need for further iterations. The only reason there weren’t
further iterations is because power was achieved; the subsequent
significance test is not independent of this methodological choice,
and will be (mildly) biased.

6. EVALUATION DEPTH

So far, evaluation effort has been calculated in terms of the num-
ber of topics that have to be assessed, if no appropriate test col-
lection already exists. However, the true cost is in the number of
documents that have to be judged, which is a function not only of
the number of topics sampled, but the depth to which a metric is
calculated, and documents judged, for each topic (leaving aside,
for simplicity, the start-up costs per topic). By evaluating each run
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Figure 7: Observed effect size of AP at different evaluation depths. The
mean effect size along with the inter-quartile range is shown. 1,000 base-
line/experimental system pairs are randomly selected from the TREC2004
Robust Track systems, and observed effect size calculated at each depth.

to shallower depths, less assessment effort is spent on each topic.
Therefore, for the same assessment budget, it is possible to sample
more topics, and a larger sample means greater statistical power.
However, shallower assessment of each topic is likely to increase
the variability of scores. This in turn will increase the standard de-
viation of score deltas, leading to a tradeoff. In this section, we ad-
dress whether more statistical power results from evaluating fewer
topics deeply, or more topics shallowly, given a fixed assessment
budget measured in terms of documents judged. In performing this
power analysis, ES will be employed rather than standard deviation
directly, to account for the fact that different evaluation depths may
display different delta distributions.

The number of documents that must be assessed for relevance in
a paired experiment is almost linear in the depth of the evaluation.
Averaging across 100 randomly selected baseline-experimental sys-
tem pairs from the Robust Track experimental data set, there are
151 documents to assess for depth 100 evaluation of the two runs,
15.7 for depth 10, 8.1 for depth 5, and 3.37 for depth 2. Thus there
is roughly the same document assessment effort in evaluating 50
topics to depth 100 for two runs as 900 topics to depth 5.

Figure 7 shows the range of observed ES for the pairwise ex-
periment at different evaluation depths using the AP metric (the
observed ES for a system pair is the mean divided by the standard
deviation of per-topic score deltas between the two systems). For
each system pair, AP scores are calculated to the specified depth,
using only the known relevant documents found by the two systems
to that depth. As evaluation depth is increased, score deltas do be-
come more consistent and therefore observed ES increases, leading
to both greater experimental power and likelihood of finding sig-
nificance. However, the improvement is only slight.

The increase in mean ES observed in deeper evaluation is out-
weighed by the extra assessment effort involved; it would be far
more efficient to spend the effort on more topics, as Figure 8 demon-
strates. Some 5,000 documents must be judged with depth 100 as-
sessment for any of the observed effect sizes to be reliably detected
as significant, whereas after this many judgments 23% of observed
effect sizes are detectable with depth 20 assessment, and 56% with
depth 5 assessment. This many judgments represent 33 topics at
depth 100, 161 topics at depth 20, and 617 topics at depth 5.

These results strongly suggest that shallow evaluation of many
topics is preferable to deep evaluation of a few, although some
caveats need to be made. First, one needs to consider how reli-
ably the selected metric measures what the experimenter wishes to
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Figure 8: Proportion of empirical experimental effect sizes detectable for
different number of documents judged with different assessment depths un-
der AP. The distribution of effect sizes is taken from that observed on 1,000
baseline/experimental system pairs randomly sampled from the TREC2004
Robust Track systems. Power is 0.8, av is 0.05.

quantify, which in most cases will be user satisfaction or utility.
Also, a fuller analysis of assessment effort would take into account
the effort involved in topic development and an assessor’s context
switch between different topics (see Carterette and Smucker [2007]
for one such model). Additionally, it is arguable that the shallower
evaluations will have a higher proportion of extrinsic variance than
the deeper ones, and that using ES to measure power masks some
of this effect. Nevertheless, these caveats seem insufficient to over-
ride the conclusion that shallower and broader evaluation is more
powerful for pairwise experimentation.

One reason to consider performing deeper assessments is the
reusability of the test topics. If the same topics are later to be reused
to test new systems on the same document corpus, then the deeper
the initial assessment, the less likely it is that new systems will re-
turn unassessed documents. This, of course, is the primary reason
why such deep assessments are performed on the TREC collec-
tions, and other public experimental collections, in order for them
to be publicly reusable. In a private lab, however, it might be more
efficient to perform shallow assessments initially, then optionally
perform supplementary assessments when new documents are re-
turned at high ranks by newly tested systems.

7. CONCLUSIONS

We have investigated the use of statistical power analysis in IR
experimental design and interpretation. One of the main prob-
lems in design phase power analysis is predicting the variability
of between-system score deltas. We have demonstrated that there
is no single population of score deltas for any given metric, but
rather a different population for each pair of systems. Estimating
delta variability from past experience or from trial experiments is
inexact, and establishing reasonable confidence is expensive. On
the other hand, iterative re-estimation of test power leads to bias
in favour of finding significance, albeit a mild one. A hybrid ap-
proach is possible, but the experimenter must be explicit about their
methodology. The issue can be avoided if the experimenter is able
to specify predicted or consequential effect not as an absolute delta,
but normalized by standard deviation, that is, as an effect size (ES).
Which option the researcher should choose depends on their par-
ticular circumstances, but we propose a hybrid approach as an effi-
cient (if methodologically complex) default.

One of the great benefits of power analysis is that it forces the ex-
perimenter to quantify the meaning of the experiment they are plan-



ning or have carried out. Contrary to common assumption, failure
to find significance does not mean that consequential differences do
not exist; one must examine the power of the test (or related mea-
sures, such as the confidence interval on the result) to draw such
conclusions. And before performing an experiment, the researcher
should consider what size of effect they expect, and whether the
proposed test will detect it, even if they do not proceed to a more
formal estimation of delta standard deviation. Inconclusive experi-
ments are the bane of the scrupulous researcher, and trying one test
collection after another until some meaningful outcome is achieved
is not, to say the least, methodologically sound.

For the purposes of planning experiments, having a rough esti-
mate of a metric’s typical range of delta standard deviations, and
of how much a good new system might be expected to improve
over a baseline, is valuable. In these terms, the 50-topic TREC col-
lections are distinctly unpromising from a power-analysis point of
view: to reliably distinguish a second quartile from a first quartile
TREC system, which seems a reasonable model for experimental
improvement, a set of close to 150 topics is required, at least us-
ing the AP metric. The experimenter should therefore aggregate as
many such collections together as possible to boost test power, as
has been done with the Robust test collection.

If the researcher chooses or is forced to develop their own top-
ics, then power analysis strongly suggests that shallow assessment
of many queries is more reliable than deep assessment of a few.
However, more work needs to be done on this; the model used here
to quantify assessment effort is simplistic, and other possible con-
sequences of very shallow assessment have not been considered.

Another area for future work is evaluating different metrics in
the light of power analysis. The squared impact of delta standard
deviation on sample size emphasises how important it is to use a
metric that minimises extrinsic delta variability; and similarly, the
narrower the distribution of delta standard deviations across differ-
ent system pairs, the easier the task of safely estimating experimen-
tal power in the design phase.
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