A tutorial on interval estimation for a proportion,
with particular reference to e-discovery

William Webber
August 2nd, 2012 (v0.1)

1 Introduction

This article is a primer or tutorial on sampling from a binainftwo-class) popula-
tion; estimating the positive proportion in that populati@and setting a confidence
interval on said proportion. The tutorial is particulariténded for those working
in e-discovery, in which the population is a collection ottdments, the two classes
are relevant and irrelevant documents, and the evaluatitampting to estimate the
proportion of documents in the collection (or some sectibit)dhat are relevant to
a production request. The tutorial is specialized to ealisty only in two regards.
The first specialization is that the examples we considetadothe very low positive
proportions that are frequently encountered in e-disggwarch extreme proportions
mean that some common approximation methods, such as tideéival (Section 7),
can be inaccurate. The second specialization is in the fawdion (Section 9), where
we briefly decode contemporary e-discovery practice, @agfly the ubiquitous (but
often misunderstoodP5% + 2%”.

The tutorial is aimed at a non-mathemetical audience thatsva deeper under-
standing of what is going on in point and interval estimatittravoids mathemetical
formulae, and works instead with verbal descriptions andréig. Only the simplest
form of sampling, namely simple random sampling, is congidgthis is, in any case,
the predominant form used in e-discovery, at least as enerethby non-technical
practitioners. We focus on the sampling distribution, aow tihis relates to (and
doesn't relate to) the confidence interval.

2 Model

Assume that every document in the collection is either whalevant or wholly ir-
relevant to a topic, and that we have a reviewer who is ableakenthe assessment
of relevance without error, without changing their conéapbf relevance, and with-
out the relevance of one document influencing the relevahemather. (These are

*Comments, corrections, and suggestions for improvemencomed; please send them to
william@williamwebber.com



unrealistic assumptions, but they are necessary for thelssggrmodel we're going to
develop to be strictly valid.) We'll also ignore the distiion between documents and
document families (for instance, attachments and the ertfaly are attached to), and
assume that the unit of assessment and the unit of produstiba same.

Let the number of documents in the collection Ne and the proportion of these
documents that are relevant bethis latter is the value that we want to estimate. We
drawn documents at random from the collection, in such a way thasahofn of the
N documents in the collection is equally likely to be samptéds forming asimple
random sample. Then documents sampled are assessed for relevance, ahthem
are found to be relevant; thus, the proportipof the sample that is relevantign.
Sampling in this way is often pictured as drawimngalls from a bag of black and white
balls, in whichr of the balls are white, where white balls represent relesdantiments,
and black balls irrelevant ones. This is knowrsasipling without replacement.

An alternative form of sampling is to choose one documentiat@, until we have
maden selections. Each document has the same probability &f of being chosen
at each draw, and the one document can be selected multips.tiln terms of the
picture of the bag, we return each ball to the bag after it e@nlgrawn. This form of
sampling is calledampling with replacement. At each draw, the chance of drawing a
white ball is7, which allows an even simpler picture to be applied: that akingn
flips of a biased coin with probability of turning up heads, where heads represents
relevant.

Sampling without replacement gives marginally more adeLgatimates, as well as
being more natural in most circumstances (we wouldn’t picksame document to be
assessed twice). Analysis based on sampling with replatiemeasier, however, and
gives a close approximation to sampling without replacemamvided the number
of documentsV is much larger than the sample size(N > n). SinceN > n
generally holds (for instance, we might be samplid§0 documents from a collection
with 1 million), the simpler approximation of with-replacemeatpling is often used
in analysis, even when the actual sampling has been witteplécement. We will
perform with-replacement analysis in this tutorial.

3 Sampling distribution

The number of relevant documents in the sample will vary randomly frame sample
to another, and with it the sample proportipn The probability that a sample will
contain a given number of relevant documents, under simple random sampling with
replacement, is given by a distribution known as the bindnligribution. We callr
a sample statistic (which simply means some value calaifaten the samplep =
r/n is an alternative sample statistic), and say that the biabdistribution is the
sampling distribution of this statistic (approximately so, if actual sampling isheitit
replacement). The primary reason for performing sampling deliberately random
way (rather than by judgment or by some default orderindh sisahe first documents
in the collection) is so that results can be analyzed, aridghepling errors modelled,
using such random distributions. Chance is more predietilain choice.

The binomial distribution for a true proportion= 1% and a sample size of =
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Figure 1: Binomial sampling distribution for a with-rep&ment sample df400 and of
100 documents from a collection witt% of documents relevant. Theaxis is scaled
so that the proportiop = r/n of relevant documents in the sample is the same.



2400 is shown in Figure 1(a); that for a sample sizeno= 240 in Figure 1(b). The
former figure shows that if we sampbe= 2400 documents from a collection in which
m = 1% are relevant, the probability that the sample will haderelevant documents
is 0.0815 (around one in twelve); that it will havi8 is 0.0410 (around one in twenty-
four); that it will have12 is 0.0028 (around one in 360); and so forth. The probability
does not drop td for any valuer of relevant documents in the range, 1, -- -, n}
(though we have truncated the figure to the right). The prifibabf sampling 2400
relevant and no irrelevant documents from a collection ifrctionly 1% of documents
are relevant is infinitesimally small, but (at least undethweplacement sampling) it
is not0.*

Contemplating the binomial sampling distribution is allweomforting, but the
practical reality is that for any given sample, though tlagisticr we observe will come
from some sampling distribution, we don’t know which distriion has generated ours,
because we don't know what the true proportias. Instead, we must use the observed
statisticr as evidence to estimate what the valuerahight be.

4 Point estimate

The first estimate we consider is the point estimate; a simglee that we might
roughly call the “best estimate” far given the evidence, generally writtén The
commonest way of making this estimate is to ask: consideihipe possible values
of 7, which makes the sample outcomamost likely? This estimate is known as a
maximum likelihood estimate (MLE). When sampling from apodion, the answer
is straightforward (though the working to prove this ansvgeslightly less sé): the
true proportionr for which the sample proportian= r/n is most likely to occur, ip
itself. Thatis,p is the MLE ofr; we write 7t,,;c = p.

Consider the scenario in which a sample2é0 documents is drawn, arizl are
found to be relevant. We've seen above (Figure 1(a)) thagitthieability of samplin@4
relevant documents out of a sample2d)0 from a population withr = 1% relevant is
is0.0815. Let’s hypothesize that were slightly higher, sag.011; then the probability
of r = 24 would be lower, a0.0728. Similarly, if = were slightly lower, sa®.009, then
the probability ofr = 24 also falls, t00.0716. In fact, for any alternativer # 0.01,
we'll find that the probability of sampling = 24 is lower than it is forr = 0.01, as is
shown in Figure 2. Thereforé,,,;. = p = 0.01.

A point estimate alone, however, is insufficient. Every immdsample has a sam-
pling distribution (the distribution for the previous pgraph’s scenario is shown in
Figure 1(a)); therefore, every random sample has the ghigsitX sampling error.
Moreover, sampling error will vary for different samplingtaps. In particular, the

1For those who like to contemplate such things, it j80%8°0. The divisor here hag800 zeroes. In
comparison, the Milky Way galaxy is estimated to have in trdeoof 1069 atoms. If each of these atoms
were converted into a galaxy the size of the Milky Way galakgn the total number of atoms in all of
these galaxies would bE0*761, still a duodecillion (a thousand trillion trillion trikin) times smaller than
our divisor. It is an interesting question whether we cowddedop a sampling method so truly random as to
given an event a faithful /1048°° probability. If such a method were proposed, don’t volunteeest it.

nttp://en.wikipedia.org/wiki/Maximum_likelihood#Discrete_distribution.2C_
continuous_parameter_space



0.08

0.06 —

0.04

Likelihood

0.02 —

0.00

I I I I I
0.005 0.010 0.015 0.020 0.025

Proportion relevant in population

Figure 2: Likelihood of drawin@4 relevant documents in a sample 2f00 from a
collection with a given proportion relevant.

smaller the sample, the greater the likely error. The irveetationship between sam-
ple size and likely error can be seen by comparing, withettt® sample, the greater
spread (in terms of sample proportign,= r/n) of the 240-sample distribution in
Figure 1(b). A sample proportion dfin 60, almost twice the true proportion, has a
probability of one in eight in th&40 sample, but less than one in a thousand for the
2400 sample. When we quote an estimated result, we need to expeegscertainty
inherent in our random sampling and estimation setup.

5 Confidence intervals

A common way of expressing the uncertainty of random sangtimation is through a
second form of estimate known as a confidence interval. Titesval provides a range
of values, and states as a percentage our degree of confithantiee true value aof is
within that range. We might say, for instance, thas betweer.006 and0.016 with
95% confidence.

A confidence interval is derived by reasoning about samplisgibutions, but in
a different way from the reasoning that leads to the MLE pestimate. For the point
estimate, we ask what proporti@nmakes the observed sample statistimost likely.
For confidence intervals, we instead look for bounding prtpoess; andr;, that each
give the observed sample statistic a particular degreelidaliness.
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Figure 3: Sampling distributions for the hypothesized Iowed upper bound on a
95% exact binomial confidence interval on the proportionetévant documents in a
collection, for a sample af400 documents, of whicB0 are relevant.



Let’s return to our scenario of finding = 30 relevant documents in a simple
without-replacement random samplero= 2400 documents. Our goal is to calculate
a 95% confidence interval anfrom this sample result. Starting with the lower bound,
we ask ourselves, for what true proportionwould the probability of observing 30
or more relevant documents in the sample be 2.5%? As it turns ot ptiwiportion is
0.84%. The sampling distribution of = 0.84% is shown in Figure 3(a). The height
of the bars that are at or abowe= 30 sum t00.025; that is, whenr is 0.84%, there is
a 2.5% probability that our sample will hagé or more relevant documents in it. This
sets the lower bound of our interval.

Next, we ask, for what true proportianwould the probability of observing 30
or fewer relevant documents in the sample have been 2.5%7? This piaparorks
out torr, = 1.78%, as shown in Figure 3(b). That in turns set the upper bound of
our interval. We now have two hypothesized values, one tdgh,low, under each of
which the probability of a result at least as extreme as osenked result is 2.5%. So
[0.84%,1.78%] is our (100% - 2.5% - 2.5% =) 95% confidence intervakon

To be precise, the formal definition of a confidence interegjuires us to go a
couple of steps further. A confidence interval on a propartias 95% confidence if
the following holds: for any true proportion, if an approaching-infinite number of
samples were drawn, and for each a sample a confidence intemeacalculated using
the same procedure, then at least 95% of these confidenceaisteiould includer.
The reasoning with the sampling distributions of hypothediboundingr values is a
procedure that satisfies this formal requirement.

The method described above for calculating a confidencevaiten a proportion
is known as the exact binomial confidence interval, becavuisebiased on the exact
(binomial) sampling distribution of the statistic (thoygh fact, the binomial distri-
bution itself is an approximation if sampling is without legement, as it generally
is). (The method is also known as the Clopper-Pearson miteafter its discoverers.)
The exact interval guarantees 95% coverage, in the forrnaksgescribed in the pre-
vious paragraph. For mostvalues and sample sizes, coverage will actually be above
95%, making the interval conservative. Despite (or becafisthis conservatism, it
is the interval one would recommend for certification pugssSeveral approximate
intervals, however, have also been developed, for analytienvenience or reduced
conservatism. We're going to look at two of these next, thsdvi (Section 6) and the
Wald (Section 7) intervals, both of which use so-called redrapproximations. The
Wald does so in a particular simplifying way, making it wiglelsed in exposition and
rough reckoning, but also helping spawn some of the misquiores about confidence
intervals that we will discuss in Section 8.

6 An accurate approximate interval: the Wilson

A distribution that pops up all the time in statistics is tremal distribution, colloqui-
ally known as the bell curve. The formula for the normal dlgttion is not particularly
simple, but its properties are familiar and computatighefinvenient, so it is a pre-
ferred analytic tool. As it happens, the binomial distribatis approximately normal,
more closely so as the sample size increases. Whereas timaiblrdistribution takes



sample size and proportion as its parameters, the norntabditon takes mean (the
center of the distribution) and variance (which gives thdttiof the distribution). A
binomial distribution with sample sizeand proportionr is approximated by a normal
distribution of mean: = nm and variance®> = nr(1 — ).

We can use the normal distribution to approximate the saglistribution of the
binomial in deriving a confidence interval on a proportiors With the binomial, we
find the lower-bound; for which a normal sampling distribution has a 2.5% probabil
ity of generating the observed sampler higher, usingr; as the mean ang (1—m;)/n
as the variance, and conversely for the upper-boynd he approximate normal con-
fidence interval on the proportion described above is knosvtha Wilson (or score)
interval.

The binomial distribution is discrete, giving probabdii only to whole samples
r such ag), 1,2, and so forth, whereas the normal is continuous, giving glodities
(more formally, probability densities) to fractional saeg?® Therefore, graphically,
in calculating the 2.5% tails of the bounding sampling disttions, we are measuring
the area under a curve, not summing the probabilities at lsapgints. Taking again
our scenario of a sample size 00 with 30 relevant documents, the lower-bound
normal approximate sampling distribution is shown in Fegdita), and the upper-bound
sampling distribution in Figure 4(b). The Wilson interval fthis sample outcome is
[0.88%, 1.78%).

7 Aless accurate approximate interval: the Wald

The Wilson interval is still analytically inconvenient e the bounding sampling
distributions have different variances and hence differeidths. We can simplify
matters further if we give each bounding distribution thensavariance. Since the
variance of the normal approximation to the binomial is @e&difrom the proportion
m, this is equivalent to using the sameto calculate the variance of both bounding
distributions, rather than the actualvalues at the hypothesized bounds. A simple
choice for this proportion is the actual proportion obsdrue the samplep, from
which we get the variangg(1 — p)/n. We then need to find the hypothetical low and
high bounds that fit these equal-width sampling distrimgioThis leads to bounding
distributions with the same shape, differing only in looatias we see for our example
scenario in Figure 5. This confidence interval is known asfagl interval. The Wald
interval for our sampling example j8.81%, 1.69%).

Since the bounding sampling distributions of the Wald waéare identical and
symmetric, it follows that the interval is symmetric, as wibdelow the MLE point
estimate as above. And indeed the interval for the exampeas® is symmetric in
this way; the point estimate is/n = 30/2400 = 1.25%, and the interval can be
expressed ab.25% =+ 0.44%. Moreover, if you were to move the two intervals so that
they were centered on the sample vatuéhen not only would they overlap, but also
the outer 2.5% tails of the melded interval would sit on tharmaries of the interval,

3This makes little modelling sense, but it allows us to adjhstboundary values more precisely to give
average coverage of 95% (though at the price of under-cgedta certain proportions).
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Figure 4. Normal approximation sampling distributions fhe hypothesized lower
and upper bound on a 95% Wilson confidence interval on theqgptiop of relevant
documents in a collection, for a sample2d0 documents, of whicBB0 are relevant.
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Figure 6: Wald interval interpreted as a margin of error.

just as the inner 2.5% tails of the bounding intervals didllastrated in Figure 6. This
relationship holds for any sample, and for any confidencellev

What we have in effect achieved is to replace the confidenteevis derived from
bounding sample distributions with one taken from the tfila single sampling distri-
bution, which is the same as the (approximate normal) sagglistribution of the
MLE point estimate forr. This seductively encourages us to stop thinking about
bounding distributions altogether, and start to think @& donfidence interval as ex-
pressing some sort of distribution of error around the pegtimate itself.

Once we make this simplification, all sorts of possibilitigsen up to us. For the
mathematical statistician, methods of working with nordiatributions are numerous;
for instance, we can estimate the intervals of compound uneassuch as recall by
the technique of “propagation of error”. For the back-od-#mvelope statistician, the
confidence interval has the simple fopm: 1.96 * 1/p(1 — p)/n, and we can see that
(for instance) to halve the width of the confidence interwad,need to quadruple the
size of our sample.

Unfortunately, the Wald interval is quite inaccurate in ooircumstances, partic-
ularly when sample sizes are small and the true propotrtisrclose tol or (as it often
is in e-discovery)). The accuracy of a confidence interval method for a given samp
size can be measured by computing the probability thatréiffietrue proportions
will be contained in the interval. Figure 7 displays coverégy the Wald interval, for
sample sizes of00 and2400. Though coverage of 95% is the goal, it can fall as low
as 25% for the smaller sample, when the proportion relevatité population is low;

11
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for the larger sample, undercoverage is limited to 93%.

The reason for the inaccuracy of the Wald interval is thatjdimgp for the variance
of both bounding distributions, the Wald interval enforeespecious symmetry on
the interval. The true interval is asymmetric; for samplethw < 0.5, the upper
bound sampling distribution is wider than the lower; and tHisparity grows a®
approaches, as Figure 8 shows. A particular crisis for the Wald inteadurs when
there are no relevant documents in the sample; heig), and an anomalous interval
of [0,0] is produced, no matter how small the sample size. This iatésvclearly
incorrect: one can sample from a collection with relevardugioents in it and have no
relevant documents in the sampl&or these reasons, though useful as an analytic tool,
the Wald interval should be avoided in practice.

We tabulate the interval estimates from the three intenethods we've considered
in Table 1. The Wald interval is symmetrit.25% =+ 0.44%), whereas the exact and
Wilson intervals are asymmetric, wider on the side towafi$$5The symmetry means
that, compared to the other two intervals, the Wald inteivalightly longer on the
low end, and decidedly shorter on the upper end. The exact\alsdn intervals are
identical (within rounding) at the upper end; the Wilsonlightly shorter at the lower
end. We can't actually say which of these intervals is moiectimate” in this case,

4A human, seeing &, 0] interval on a modest sample will realize something is wrawgn if they're
not sure what; but these testing regimes are increasingfypaterized, and a computer seeing this will carry
blithely on.

13



Interval 1.25%+ width

Method

Bottom Top Lower Upper
Exact 0.84 1.78 0.41 0.53
Wilson 0.88 1.78 0.37 0.53
Wald 0.81 1.69 0.44 0.44

Table 1: Intervals and interval widths for the 95% exact bired, Wilson, and Wald
confidence intervals, for a sample2f00 documents, in whicl30 were relevant.

though, since we don’t know what the true proportions (and even if we did, an
interval only needs to cover it 95% of the time, not always).

8 Confidence interval misconceptions

We've covered the difficult ground in our discussion of coefide intervals on the
proportion; now it is time to use what we've learnt to clearagme misconceptions
about confidence intervals.

8.1 Confidence intervals are not necessarily symmetric

Itis very common to think of a confidence interval as some gisymmetric “margin

of error” on the point estimate, and express the interval fiarm like “0.2 + 0.03".
However, the exact confidence interval on the proportiod gaturate approximations
to it) is only symmetric in one special case, where the olesksample proportiopis
0.5. For every other value gf, the interval is asymmetric, longer on the inward than
the outward side, and sometimes significantly so. The Waé&tval does always give
symmetric intervals, but this is the main cause of its inaacy

8.2 Confidence level does not equal width

Don’'t make the mistake of thinking that the confidence le¥edminterval (say, 95%
or 99%) has a simple mapping to the interval’s width. A 99%iwal is not simply
4% wider than a 95% interval, at least not in the space of tbpgnion parameter.
If we used the Wald interval, then we can consider the 99%\atéo be 4% wider
in a sort of probability space — that is, we go out a further 2%@ech end of normal
distribution. But this is much more than 2% wider when expeglsin proportions of
the population. In fact, a 99% interval on a proportion is entran 30% wider relative
to a 95% interval; for instance, if the 95% interval[is4, 0.6], the 99% interval is
[0.37,0.63]. And a 99.9% interval is 30% wider than a 99% interval; andosthf This
leads on to the next point.

14



8.3 A 100% confidence interval is largely meaningless

Newcomers to estimation occasionally ask for a 100% condielémterval, or wonder
whether we settle for 95% just out of some laziness or vageeftafter all, it's only
another 5% ..."). A 100% interval, however, will be at le@tl); the rounded brack-
ets mean we can rule oQibr 1, but only if we see at least one relevant or one irrelevant
document in the sample. We can only rule out true proportibashave no probabil-
ity of producing the observed sample. But even a true prapodf 99.9% has some
probability of producing a sample holding no relevant doeuats (although again we
may be off counting atoms within galaxies within atoms witlgalaxies). When we
sample, we have to accept some degree of uncertainty; whatlesr our control is the
degree of uncertainty we’re willing to accept.

8.4 The width of the confidence interval cannot generally belkown
in advance of sampling

We would like to know before we design our sample how wide auwnfidence interval
will be, for a given sample size. Unfortunately, as we hawenséhe width of a confi-
dence interval on a proportion depends on the sample piop@attually observed. All
we can do is say what the maximum confidence interval widthlvei] which occurs
when the sample proportion@sb.

8.5 Aconfidence interval is not simply the percentiles of a sapling
distribution around the point estimate

A frequent misconception is that a confidence interval carphi be taken from the
percentiles of the sampling distribution of the point estie that, in other words, the
confidence is simply a sampling “margin of error” around tépestimate. Rather,
as we have seen, a confidence interval is formed from the dheaing tails of the
sampling distributions around the upper and lower hypateesbounds on the inter-
val. This is only equivalent to percentiles of a sample-emd when the sampling
distribution is (or is approximated as) symmetric and idmdlty-shaped for all pa-
rameters. That is the case for the Wald approximation; mutyelve seen, the Wald
approximation is often not a close one.

9 Confidence intervals in e-discovery practice: the mean-
ing of 95% =+ 2%

Now — finally! — we're ready to look at the use of confidence s in e-discovery.
Of course, there’s an enormous amount that could be said serém going to re-
strict myself to just one point: clarifying the meaning oEthometimes mysterious
expression 95% =+ 2%" that is frequently quoted in e-discovery practice, alorithw
the magical sample siz€899 and2401 that accompany it.

SPeople commonly misapply bootstrap and other resamplirthate in this way.
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First, let's unpack95%+2%". It must be immediately clarified that this expression
is properly made about a planned sampling task (or, at lesisbspectively about what
was planned), not about an actual estimate; the reason hiswith the “+2%", as
we’'ll see in a moment. The “95%” indicates that what is beit@nped is a 95%
confidence interval, typically on the proportion of releva@locuments either in the
whole collection or in some part of it (such as the subset efdbllection not being
produced). That is, the evaluation designer wants to betalday at the end of the
sampling something like “we have 95% confidence that thegroportion of relevant
documents lies within the interval [, y]".

The “+2%" is stating the desired width of the confidence interval. Th" is a
proportion of the entire collection, not of the point esttedhe evaluator is imagining a
statement like 44% +2%". As we said before, however, the exact width depends upon
the observed sample proportion; herg;2%” is the maximum width. When we've
drawn the sample, we can calculate the exact interval; itngssake to simply apply
the 2% to the observed sample proportipnThe interval on a proportion is widest
when the sample proportignis 0.5. This can be observed for normal approximations
in Figure 8, but the same holds true for the exact interval@oskr approximations to
it. So to achieve the£2%" guarantee, the evaluator must choose a sample size large
enough to give an interval this width if the sample propertiarned out to be = 0.5.

We mentioned above that the exact interval is not genergfhynsetric, and so that
stating it in terms of a point estimate plus or minus a margiermor is incorrect. For
the special case that the sample proportiois 0.5, the exact interval is, however,
symmetric, so £2%" is correct as a statement of maximum width, though mislegdi
if we take it to imply that the actual interval will be symmietr

What sample size is necessary to achieve the worst-cas®fjoak%"? For the
exact binomial confidence interval399 samples are required, which is where this
magical number comes from. If the approximate Wald inteisalsed instead, the
number is2401. We've seen that the Wald interval can be quite inaccuraia;mpay
prefer to associate with e-discovery statisticians wHoahbut ‘2399” than those talk-
ing about 2401". You'll notice I've sat on the fence in this tutorial by warg with
2400.
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