Load Balancing for Term-Distributed Parallel Retrieval

Alistair Moffat

Computer Science and
Software Engineering
The University of Melbourne
Victoria 3010, Australia
alistair@csse.unimelb.edu.au

ABSTRACT

Large-scale web and text retrieval systems deal with ansooht
data that greatly exceed the capacity of any single machire.
handle the necessary data volumes and query throughpsit pate
allel systems are used, in which the document and index data a
split across tightly-clustered distributed computingtegss. The
index data can be distributed either by document or by tenrthis
paper we examine methods for load balancing in term-digtib
parallel architectures, and propose a suite of technicuetiuc-
ing net querying costs. In combination, the techniques veeritee

William Webber

Computer Science and
Software Engineering
The University of Melbourne
Victoria 3010, Australia
wew@csse.unimelb.edu.au

Justin Zobel

Computer Science and
Information Technology
RMIT University
Victoria 3001, Australia
jz@cs.rmit.edu.au

stores the index corresponding to a subset of the docuntprasps
are processed in parallel at all nodes; and collated backisingle
combined answer when all nodes have completed their local pr
cessing. Every node participates in the resolution of egesry.

An alternative is to use term-distributedindex, in which each
of the processing nodes maintains complete index infoondtr
a subset of the terms in the collection, and each query isreef¢o
the subset of the nodes that hold relevant information. tardard
term-distributed query resolution method, a receptiomseives a
query, requests the index information for the query terramfthe

allow a30% improvement in query throughput when tested on an pertinent nodes, and processes this information centrallgm-

eight-node parallel computer system.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content anialysd
indexing —indexing methodsH.3.2 [Information Storage and Re-
trieval]: Information storage file organization H.3.3 [Information
Storage and Retrieval]: Information search and retrieve¢arch
process H.3.4 [Information Storage and Retrieval]: Systems and
software —-performance evaluation

General Terms
Efficiency, performance, algorithms.

1. INTRODUCTION

pared to document-distributed parallelism, such ternritised
indexing has the drawback of a severe bottleneck at thetieoés.

An alternative is theipelinedterm-distributed evaluation strategy
of Moffat et al. [2005], where the query processing is distted
across the nodes. Document-partitioning achieves more leael
balancing than does pipelining, but has the disadvantagegoir-
ing more disk accesses, because the index information fdr ea
term is stored across multiple machines.

In this paper we examine methods for load balancing in pipeli
term-distributed architectures, and propose a suite bfiigaes for
reducing net querying costs. In particular, we explore tizelIdis-
tribution behavior that pipelining displays, and show thatimbal-
ances can be addressed by techniques that include prediudiex
list assignments to nodes, and selective index list retpbica

In combination, the techniques we describe allo0&o6 im-
provement in query throughput when tested on an eight-nade p
allel computer system, and result in a term-distributedémgnta-

The amount of data that must be handled by a large-scale in-tion of parallel querying that approaches the query thrpughates

formation retrieval system greatly exceeds the capacigngfsin-
gle machine. For example, web search engines manage @mitect
measured in the terabyte range; if this volume of data weteeto
stored and indexed on a single computer, queries would takg m
tens of seconds to evaluate with even the most efficient inejex
resentations and query resolution methods.

To handle the necessary data volumes and query throughipst ra
parallel systems are used, in which the document and indevada
split across tightly-clustered distributed computingtsgss. For
example, in alocument-distributedystem, each processing node

SIGIR’06,August 6-11, 2006, Seattle, Washington, USA.

Copyright 2006 ACM. This is the author’s version of the workt is
posted here by permission of ACM for your personal use. Notréa
distribution. The definitive version was published in ACMGHR, 2006,
http://doi.acm.org//10.1145/1148170.1148232

of a document-distributed system, with lower total CPU viaeakls.

2. DISTRIBUTED RETRIEVAL

In a standard monolithic retrieval system, a collection ofut
ments and an index for the documents are stored on the savee ser
An efficient representation of an inverted index consist wdcab-
ulary of indexed terms and, for each term, an inverted lighfafr-
mation about which documents contain the term. The invdited
might also contain information such as within-documentjfien-
cies, and word positions in the document. Queries are reddly
fetching the inverted lists corresponding to the query geremd
using the list information to incrementally build a setaafcumu-
lators that, by the time the last term has been processed, store the
similarity of each document to the query. Through carefatime
pruning of documents with low similarity [Lester et al., B)0Othe
set of accumulators can be kept small, with no more than otie- ac
mulator for everyl00 indexed documents.

A parallel, ortightly distributed retrieval system is one in which
responsibility for the management of the collection of doeats

is partitioned, under centralized control, over multiptenputers
sharing a high-bandwidth network.

Other types of distributed system include meta-searclesyst
where queries are processed centrally but the individuatlimhent
collections are independent; and peer-to-peer systemshich
there is no central coordination, possibly low-bandwidétwork
connectivity, and unknown amounts of document duplicatie
do not consider these kinds of distributed system here. &¥adh-
nigues developed for meta-search, such as collectionte#icbave
some appeal as a way of reducing costs in the documentbditgd
systems described below, the fact that they are less efetttan
fully indexed systems make them attractive only when otlger a
proaches cannot cope.

Nor do we consider mirroring — building of multiple copies of
the complete system so as to correspondingly multiply tiinput.
Our concern here is with retrieval environments in whictréehis
so much data that storing it all on a single machine would be ei
ther impossible, because of hardware limitations; or ircfical,
because of excessive response times to queries.

Two principal distribution paradigms have been develoie
approach is to havedocument distributethdex and a correspond-
ing query processing regime. In a document-distributetesysthe
collection is split across thk available processors (oode$, so
that each node is responsible for approximatel¥ th of the col-
lection. Nodes then build local indexes for those partiioand
answer queries against them. Queries to the system as a areole
routed to all of thek nodes in the network, each of which evaluates
the query and returns a setiofesults to the coordinating machine
(the receptionisy. The receptionist then collates thé answers
into a final list, and returns the topof them to the user.

Document distribution has a number of natural advantagats, n

the least of which is that each machine is in essence managing

a smaller monolithic collection — an arrangement for whioh i
dex construction and query processing mechanisms are well u
derstood. Document distribution also ensures a relatistple
balance of workload across tlhemachines, since each is process-
ing the same queries, at the same time, at roughly equal trost.
addition, document distribution provides natural suppdren the
documents themselves are to be supplied to the user — thdyecan
retained on the machine that indexed them.

The alternative igerm-distribution In a term-distributed in-
dex, each processor stores index information about a sobgiet
terms, rather than a subset of the documents. When the i@tept
ist receives a query it requests index information from #levant
nodes, and combines that information to form a list of oVerat
swers. Only nodes that store information relating to a teriat
current query are required to take any action.

The key advantage of term-based distribution is that theze a
fewer disk accesses, because index information for each iter
now stored in just one location. Term-distribution also liegpthat
less main memory is required for storage of redundant vdaapu
information, freeing up memory for useful caching; in a doeunt-
distributed system, each node must maintain vocabulaoyrimd-
tion for every term within its partition, and a large numbéteyms
appear in more than one patrtition.

Term-based distribution does, however, have a major disadv
tage — in the simple form described here, the receptionistrnes
a bottleneck, and, because the bulk of the actual compntétio
performed using the index lists, starves the other nodes@ful
work. In effect, the nodes become little more than inveried |
servers; Moffat et al. [2005] show that standard term distion
is unable to obtain significant gains in throughput when talehl
machines are made available. Moreover, even if the invéited

do not contain word positions they can be long, meaning tigat s
nificant network traffic might be incurred.

Since the nodes are doing little work, while the receptioiss
at full load, there is a severe load imbalance. The issueaif lo
balancing is central to our contributions in this paper. et sec-
tion describes a pipelined approach to query evaluationtarra-
distributed environment, and then Section 4 returns toshesd of
load balancing.

3. THE PIPELINED APPROACH

In a term-distributed system, an obvious way to elimina& th
bottleneck at the receptionist is to have multiple queryuatars,
one at each node. Each node can then request term infornaation
needed from other nodes, and return completely evaluatedegu
to the receptionist. However, such an approach has twowisad
tages. One is that the movement of term lists creates a signifi
amount of network traffic. The second is that the caching beha
ior at each node is poor, as memory is used both for the lidts he
at that node and for lists that have been imported from elessvh
Our experience with monolithic and document-distributgstems
is that effective use of memory as a cache of recently predess
lists — there tends to be high temporal locality in use of gtems
—is critical to achieving high throughput.

An alternative approach to eliminating the bottleneck isise
pipelining[Moffat et al., 2005]. In this approach, the query is eval-
uated in stages by the sequence of nodes that hold the idViste
corresponding to the query terms. The key idea is that raltzer
pass around inverted lists, a partially evaluated querpresented
by the set of accumulators, or document-similarity comtidns
corresponding to the terms that have already been procesised
circulated to the relevant nodes. Each node that receigeguéry
package applies the updates generated by one or more ofehe qu
terms, and then passes the package to the next addressee on th
routing list that accompanies it.

In the pipelined approach, the query evaluation strate¢grin-
by-term. For example, suppose that there fare- 8 nodes, and
that a query has four terms;, t2, t3, andts, with the inverted
lists held on nodes At(), B (t2 andts), and C {4). Evaluation of
the query begins on node A, which processes the list cornetipg
to termt¢; to produce an initial set of accumulators. This set is
passed to node B, which processes the listgfoandts against
these accumulators to produce a modified set. The modified set
is passed to node C, which applies the updates generateceby th
index list for ¢4 to produce a final set of accumulators, and from
them extracts the top answers to return to the receptionist. The
only work the receptionist need do is receive each query) ji¢a

””””””””””””””””””””””””” Queries

1 process
| t1

| Query+

— = | _routing
//_/ | -—
V///\‘ ! Receptionist
T~

—
Results

process process
t2&t3 4

Results

Figure 1: Example of pipelined query evaluation.

path through the nodes, and return the answer lists to theasis
shown in Figure 1.

In pipelining, each node needs to have enough memory set asid
for accumulators for each of a fixed number of threads (thetraum
of simultaneous threads needs to be capped to a reasonafilole
prevent thrashing), so the impact on caching is lower tharfitht
version of distributed query evaluation outlined above.e Tiet-
work traffic is limited to the accumulator structures that passed
around between nodes.

However, experiments with pipelining revealed shortcayaim
the method [Webber and Moffat, 2005, Moffat et al., 2005].eTh
most acute was load balance — a small number of query terms con
tributed a significant fraction of the total workload. Thesere not
necessarily the most common terms in the collection, biterat
were terms whose product of their frequency in the collectind
their frequency in the query stream meant that a dispraporti
ate proportion of total processing effort was being spenthem.
The nodes that held the index information for these highkioad
terms were busier than the remainder, leading to load imbala
Over short sequences of queries, this problem could be eateel
by phenomena such as locally high repetition of particulsery
terms. While these problems could potentially be ameléatdty,
for example, caching answers to recent queries, even witepe-
tition of queries the problem would remain.

In the next section we describe alternative approachesat lo
balancing in a pipelined distributed retrieval system, iarttie sub-
sequent section report on our experiments measuring thacinod
these approaches.

4. LOAD BALANCING

In their summary of the pipelined approach, Moffat et al.q2p
conclude that a lack of natural load balancing in the pipeliap-
proach is a serious handicap, and that a random assignmentsf
to processing nodes risks serious bottlenecks emergingartic-
ular, if two relatively high workload terms are placed on #zene
machine, then it is hard for other machines to operate aeftil
ciency, and overall throughput suffers.

Moffat et al. define workload as follows: for a terirthat ap-
pears in a query bataf); times, and has an inverted list thatis
bytes long (using some appropriate representation, imgucbm-
pression), the workload; associated with that term in that batch
is given by

Lt:thBt.

The workload associated with a processing node is the suimeof t
workloads of the terms assigned to that node. That is, thklaex
of a node is the total length of compressed inverted listsrthest
be processed at that node during the execution of a quegnstre
To investigate the problem of load balance, we used a verfion
the Zettair search engih¢o index the426 GB GOvV2 crawl of the
.gov domain used in the TREC Terabyte Track since 2004. All
the experiments in this paper are on this data. Zettair watifred
by us to support document-distributed and pipelined disted re-
trieval; with a necessary part of the modification being tigiton
of multi-threaded query evaluation. For these initial ekpents
with load, we used a sestyNQ of queries that have been artificially
adapted to th@0ov2 crawl to give term-frequency, repetition, and
answer-frequency properties close to those of real quéhiesEx-
cite97 query log) on general web data (the TREQOg collection)
[Webber and Moffat, 2005].
Table 1 illustrates the nature of the load balancing problém

1Seehttp://www.seg.rmit.edu. au.

Batch

Processor 5 3 7 5 5
1 0.64 056 0.66 0.69 0.56
2 1.00 1.00 1.00 1.00 1.00
3 055 058 054 0.64 0.73
4 0.46 057 056 056 0.46
5 051 0.46 051 057 0.55
6 0.69 0.61 0.69 0.57 0.60
7 056 0.40 0.44 0.40 0.48
8 0.57 051 061 0.67 0.64

Imbalance 1.61 170 159 157 1.59

Table 1: Load imbalance for the pipelined retrieval system when
terms are assigned to nodes using a single random assignment
Each batch reflects a simulated evaluation of the workload-as
ciated with10,000 SYNQ queries, acrosé = 8 processors. The
last row shows the ratio of the largest load to the averag lozer

that batch. The larger that value, the greater the imbalance

prepare the table, a set@d,000 SYNQ queries was broken into six
batches each df0,000. A random assignment of term lists to pro-
cessors was effected via a hash function, and then the veaiklo
of the query batches evaluated with respect to the termrassigt,
by simply calculating values fak: and then summing them, with-
out actually answering the queries. For each query batemade
assigned the heaviest workload in this simulated environmes
normalized to a value of.0, and the workload at all of the other
nodes assigned pro-rata values betw@érand1.0.

The resulting normalized workload ratios for a single rando
assignment is shown in Table 1. For reasons that are exglaine
shortly, results are not shown for batch one. The tablelgisaows
that, by luck, processor two has been assigned a combinafion
terms that results in it having the heaviest workload in e &f the
batches for which results are given; on the other hand, psacs
four, five, and seven are half-idle.

The final row of Table 1 shows the factor by which the work-
load on the node with the heaviest load in each batch exceeds t
average across all eight processors. The larger this vhleenore
likely it is that there will be nodes on the network that arénge
starved of useful computation. In turn, starvation resnltewered
overall throughput; in an ideal situation, the peak:averagrk-
load ratio would bel.0, and all nodes would share the workload
equally. The imbalance of arouridé shown in Table 1 represents
a starting point for the investigation reported in this papad a
crystallization of the effect noted by Moffat et al. [2005].

5. REDUCING IMBALANCE

To smooth the workload across the processors, it is negessar
to ensure that no one processor is responsible for an exeessi
number of high-workload terms. Two separate strategiegesig
themselves: distributing the inverted lists such that tbekioad is
evenly balanced; and duplicating inverted lists such thatsame
high-workload term is managed by multiple processors.

There are several possible approaches to an even-balasice di
tribution of inverted lists. An obvious approximation is base
the term-to-processor assignment on the set of term freipef),
on the assumption that the number of pointers in each irdige
roughly corresponds to the workload generated by that Irstrw
queries are being answered. This mechanism has the adeaftag
being query independent.

Batch

Strategy 5 3 7 E 5 Avg

Random 145 144 146 150 148 1.47
Using f: 143 120 123 140 142 134
PastL, 114 126 123 119 117 1.20
CurrentL; 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Estimated load imbalances with different term assignment
strategies. Each batch reflects a simulated evaluatioreoftitk-
load of 10,000 SYNQ queries, acrosk = 8 processors, as a ratio
of the largest workload to the average workload, for thaitety.
Imbalances for the “Random” row are the averages oy#0 ran-

Batch
Strategy 5 3 7 5 5 Avg
Duplicate 1 126 120 1.10 1.17 1.11 1.17
Duplicate 10 1.06 129 1.17 1.18 1.16 1.17
Duplicate 100 1.09 1.14 1.10 1.13 115 1.12
Duplicate 1000 1.08 1.09 1.07 119 1.09 1.10
Multi-replicate 1.05 1.12 1.09 1.16 1.12 1.11

Table 3: Estimated load imbalances with different amounts of in-
dex list replication. All assignment is via the fill smalléstm as-
signment strategy based on the “Past approach (see Table 2).
When multiple servers host a query term, a random choice dema

dom assignments of terms to nodes. The last column shows thebetween them by the receptionist. Results can be compairtid wi

average imbalance over the five query batches.

Alternatively, the distribution can be based on the wor&lda,
computed in arrears for some previous part of the queryrstréa
this “pastL:” method, workload assessment is computed at the end

the third row of Table 2.

to choose between alternative routings for a high-workigaelry,
and so that the effort associated with processing a giveodis be
shared across multiple machines.

of each query batch, and assumed to generate a term assignmen Replicating every list is unlikely to be satisfactory. Dgiso

that is then used through the whole of the next query batchis(T

is why no results are reported for query batch one in any of the
tables — in this approach, batch one is used as the workloaeimo
for batch two, and so on.)

As an exploration of the potential gains available througgtis-
tribution, it also makes sense to consider a hypotheticairént
L;” system that knows (perhaps via an oracle of some sort) the
workload distribution for each batch at the beginning of thetch.

Once per-term workload estimates have been prepared, ithere
also the question as to how to use them. The obvious appreach i
to assign terms to processors in a round-robin manner, t@agtee
that the heaviest workload terms do not reside on the samieingac
However, while such an approach puts equal numbers of tenms o
each machine, it does not result in balance. To see why, magi
that the heaviest term is temporarily held back, and all efdather
terms assigned to nodes, starting from node two. If the reobih
approach yields a balanced set of workloads, this procesddh
result in a balanced workload; but when the first term is then a
signed to node one, significant imbalance must result. Ehahe
round-robin method does not in fact give balanced workloads

Instead, we employed fill smallestapproach that considered
each term in turn, from heaviest workload through to least a
assigned it to the machine that had (through until this mdjnen
been assigned the least total workload. This approachtseisul
nodes hosting different numbers of terms, but having vemjlar
total workloads.

Table 2 shows simulated workload imbalance numbers foethes
strategies, compared to the starting point of random assgh
(one example of which is shown in the last row of Table 1). As
these results show, although the term frequeficis a significant
component of the inverted list lengfB:, which in turn is a factor
in L, the query frequency cour: wields a much stronger in-
fluence. A static assignment of terms to nodes basefi @one
provides performance only slightly better than a randonigass
ment. At the other extreme, the “Currebt” approach (naturally)
attains a simulated workload imbalance average @d.

A confounding issue is that itis possible for one term in therg
stream to be so common that, even its inverted list were glane
machine by itself, the workload would not be balanced. Spgjtof
lists across more than one machine, by separating them amts, p
is not a satisfactory solution, as it increases networkitrah more
attractive option is teeplicatelists, so that the receptionist is able

would require doubling the storage at each machine, anddxmil
dermine the effectiveness of caching, as twice the voluniedzx
data is active at each node. Moreover, most of the benefipbi€ee
tion is likely to be observed by considering only the highrkioad
terms. We thus propose selectively replicating the ingdisgs of a
small number of high workload terms, potentially halving fieak
workload associated with each copy of the list.

Afirstissue is the number of lists to replicate. Table 3 shthves
effect of duplicating the lists of the highest-workloado 1,000
terms. The final “multi-replicate” row shows a more complex a
rangement in which the most frequent index term is placedllon a
eight processors; then another nine terms are placed onofour
them; then another ninety terms are placed on two procesésrs
Table 3 shows, replication can indeed lead to better (sired)a
workload balance. Replication is not guaranteed to impimee
formance, as can be seen by comparing the rows “Duplicatad.” a
“Duplicate 10".

Another potential problem in Table 3 is that making a random
choice (when choice is available) for the query routing maiyhe
ideal. Rather, it makes sense to route each query to theatiter
host that has the smallest workload, so that the system jgiael4o
the balance of query terms in the current batch. Having tbepre
tionist track assigned workload in this way represents gteai
equivalent of the “fill smallest” approach, and allows urecged
interactions between terms to be at least partially allofeedThat
is, when a choice of routing is available, a better stratedy send
the query to the processor that has had the least volume of que
work assigned to it so far.

Table 4 shows the effect of making this change. As can be seen,
load-based query routing combined with replication cad keeal-
most perfect (simulated) load balance. Multi-replicatiqpears to
be unnecessary for this data and queries, but might be iangort
if there were still serious load imbalances not addressechéne
replication. Nor does it seem likely that replicating evissywould
lead to further improvements in balance.

Replication does, of course, add to the total storage reduiy
the index, especially since it is exactly the high-frequyeterms
that get duplicated. The next section reports on actualghesugh-
put results for some of these options, including the adudftictor-
age cost incurred.

Batch Batch

Strategy 5 3 7 5 5 Avg Strategy 5 3 7 5 5 Avg

Duplicate 1 126 120 109 117 111 1.17 Hashed 404 405 429 434 410 4.16
Duplicate 10 1.03 1.16 1.07 1.07 1.09 1.08 Duplicate 100 5.09 5.00 5.28 534 541 522
Duplicate 100 1.01 1.02 1.01 1.03 1.02 1.02 Doc-distributed 5.36 5.50 6.02 6.07 5.82 5.75

Duplicate 1000 1.00 1.00 1.00 1.00 1.01 1.00
Multi-replicate 1.01 1.00 1.00 1.00 1.01 1.00 Table5: Measured query throughput rates on a Beowulf-style clus-
ter of 8 computers, each2a8 GHz Intel Pentium IV withl GB of
Table 4. Estimated load imbalances with different amounts of in- RAM and 250 GB local SATA disk, where each batch consists of
dex list replication, usingYNQ queries. All assignment is viathe 10,000 SYNQ queries executed against t&@v2 collection to iden-

smallest-first term assignment strategy based on the Rastp- tify the topr = 1,000 matching documents, and where the num-
proach (see Table 2). Load tracking (rather than randoncehs bers reported are in units of terabyte queries per machicende
used to set the routing when queries contain replicatedsteRe- As many as32 simultaneous query threads were permitted. The last
sults can be directly compared with the matching rows of @&bl column shows the average throughput over the five query batch
Strat Batch A

6. LIVE EXPERIMENTATION rategy 2 3 4 5 5 V9

A simulation is never better than the assumptions on which it Hashed 466 460 469 459 436 458
is based, and sometimes much worse. We also implemented a Duplicate 100 6.13 5.84 583 591 6.00 5.95
document-distributed system, and the “Duplicate 100"riftisted Doc-distributed 7.86 7.87 790 7.89 7.81 7.87

system, using as a starting point for both a carefully eregiee
version of the Zettair retrieval system.
The hardware used in all the experiments described in tigis se Table 6: Measured sum of busy loads on processors, not including
tion is a Beowulf-style cluster of 8 computers, each&GHz Intel the receptionist, fos YNQ queries.
Pentium IV with1 GB of RAM and250 GB local SATA disk, sup-
ported by a dua2.8 GHz Intel Xeon with2 GB RAM running De- _ . .
bian GNU/Linux (sarge), with & GB SCSI disk for system files put ra}te (takmg Into account collgctlon size anql numberrotes-
and twelvel 46 GB SCSI disks for data in a RAID-5 configuration. SO'S in USe) is.52 terabyte queries per machine second. If we

An important aspect of measurement in this area is to allemta- hﬁ,d W'fhedht,o be even morebpr“euscle, we could have rrfeplsyced ‘ma
chines to operate as efficiently as possible, and to this knéitae chines” in this computation by "total processing gigahgrtow-
software used allows multi-threaded operation, with asyes2 ever, all the machines in our cluster have the same speedyvand

; : . . se the simpler computation.
queries concurrently active at any given time. u . . o
We also paid particular attention to file placement on diski-h The relzultz in Tal;l_e E':jsh_o;]/vl th?jt sele((:jtlve repllcat_lon l.)émd
ing noted in previous work [Webber and Moffat, 2005] thativar ~ Past workload, combined with load-based query routing,akear

ability in the way in which files were allocated could generedn- imprc_)vement;)n ra_nd(_)m unreplicated te_rm gs_signm_ents. viawe
siderable volatility in experimental measurements. A datid despite the30% gain in performance, pipelining still falls short
“experimental” partition of the right size was maintained the of the consistently high throughput rates achieved by demim

local disk of each of the nodes, and the relevant index fileecbp distributed igdexc;ng. d wh ble 6 sh h h
into it at the start of each experiment, so as to ensure thkspieed ,TO try and un erstap why, Table 6 s O.WS.t € sum, across the
did not become a factor in the experiments. eight processors (not including the receptionist), of treasured

To carry out each experiment, a query stream (one batch) wasPUSY time while each query batch is being processed, whessy"b
processed from beginning to end, after the previous batshewe- !ncl_udes all non—ldle_ activities. A value &f0 in this table wo_uld
cuted in non-timed mode as a warm-up. Thertop 1,000 scoring |nd|c§te that the entire system was completely saturatddasim-
documents for each query were identified, and their TREC -docu pute_ltlon th_roughout the processing, an outc_ome that wanlidize
ment identifiers output. All words and numbers in the souie c _attalnable if all nodes were busy all of_the time. Valges Wezlci)
lection were indexed, and entered in a document-level indéx indicate that more than half of Fhe available processinguese is
out ordinal word positions. The software system Zettair @sak yvasted, and thgt r_‘Od‘?S are being s_tarved of work. As can be see
use of a byte-based compression regime that provides a cempr in docgment d|s.tr|but|(‘)‘n thg machlne:’s come very clgse t.ugbel
mise between compression effectiveness and decoding.spaed fully utilized, while for “Duplicate 100" pipelining the iltzation

document-distributed index requiréd.3 GB, including all vocab- IS just underr5%.

ulary files; the term-distributed index occupiéé.1 GB; and the .Ta.ble ’ ShOYVS the measured workload imbalance for the three

“Duplicate 100" term-distributed index requird@.7 GB. distributed retrieval schemes that were tested. Theséseshow
Table 5 shows normalized query throughputs, measured ta uni

of terabyte queries per machine second. We use this undrafial- S Batch

ized throughpugs our yardstick (rather thamnormalized through- trategy 2 3 4 5 6 Avg

put, measured in queries per second), because it takes intargcco Hashed 1.63 167 159 167 175 1.66

the two key factors that affect query rates in a scaling serzsaely, Duplicate 100 1.06 1.06 1.07 1.05 1.10 1.07

the size of the collection, and the number of machines aghplier Doc-distributed 1.01 1.01 1.01 1.00 1.02 1.01

example, if a cluster of = 8 machines working with theov2 col-
lection processes a batch 1¥,000 queries inl 15 seconds (a typi-
cal run time for our experiments), then the unnormalizedugh- Table 7. Measured workload imbalance across the eight proces-
put rate is87.0 queries per second, and the normalized through- sors, forsynQ queries.

Batch

Strategy 5 3 7 E 5 Avg

Hashed 182 182 186 184 183 183
Duplicate 100 221 214 225 217 220 219
Doc-distributed 2.21 225 224 231 227 226

Table8: Measured query throughput rates fapvQ queries. Other
details are identical to Table 5.

that our earlier simulations — which were used to help detegm
which systems were worth full-scale implementation antings-
were indicative but not completely accurate. Unreplicatigelin-
ing was worse than predicted, while replication achievéghtly
better performance than we anticipated. These experinilargs
trate that simulation is no substitute for live measuremastthe
impact of factors such as caching is extremely difficult tadelo

Another possible limitation in our experiments was the uke o
artificial queries, despite the care with which these qgewere
constructed [Webber and Moffat, 2005]. We also had access to
collection GovQ of queries provided to us by Microsoft Search;
these are queries extracted from their search log for whighas
the top three ranked document was in tigev domain. This log is
also somewhat artificial (due to possible selection biashethe-
less it is a set of real queries that can be used for interiruggy#ie
GOV2 crawl. The queries in the log were stopped to remove all
occurrences of the commonest six terms in the collectiod, @an
further stoplist 0310 words was used to stop all queries except for
those that would be reduced below three words.

Table 8 is identical in structure to Table 5, but uses theseQ
queries. The results are broadly consistent. Note thatialtiee
different distribution of query terms and frequenciesptiyhput is
much lower than for the YNQ queries.

The reason why the replicated pipelined method is unabletto b
ter the document-distributed mechanism, even though thés@Re
less busy, comes back down to load balancing, but now on & burs
level rather than a batch level, where a “burst” is definedeab
short sequence of queries, perhaps a second’s worth. Owgdr sh
spans of time there are micro-imbalances in workload cabged
random chance in the query stream, with the query routings fo
each burst often colliding at one or the other of the nodes han
dling them. Figure 2 plots the average busy load over bufste®
queries at a time for a sequence2gf00 queries, and the busy load
for one of the nodes. The average busy load is relativelydgtea

Load imbalance
—{— Busy load node 1
— -@— - Mean busy load

Load

0.0...|....|....|....|

Query burst number

Figure 2. Busy load measured locally for twenty query “bursts”
each containing 00 queries, plotted for a single node and com-
pared to the average busy load across8albdes. The upper line
shows the load imbalance in that query burst.

but the single machine uses a variable amount of CPU timagluri
each of the query bursts.

To allow for this volatility, we also tested a “decaying wioréd”
variant of the system, in which the estimates of total nodekisad
that were used as the basis for the routing decisions wendyslo
eroded over time, so that the receptionist gives recentrimton
more weight, thereby perhaps eliminating localized hdtspgdow-
ever, we were unable to substantially improve on the thrpugh
rates already reported. It would appear that workload iariee
at the micro level remains an issue in the pipelined approasn
after the workload imbalance at the macro level has beereased.

7. SCALABILITY

One issue that is potentially very hard to deal with is that of
scalability. Linear growth in resource consumption as [golsize
increases is a desirable attribute of any algorithm, bubiisething
that requires delicate argument when both data sizes andgsing
power are simultaneously being increased. For examplegytmot
be appropriate to show scalability by taking a fixed (evewmiifé)
amount of data and showing that the time taken to solve a @mobl
is proportional tol /k whenk processors are used — the speed up
might, for example, have been achieved solely as a funcfithrece
being more main memory (across the pool of machines) in which
fixed-size data structures can be accommodated.

More useful is to grow data volume and processor numbers at
the same rate, and ask whether performance can be maintained
at the previous levels. This approach is in contrast to tkalte
reported in Section 6, where the maximum amount of available
data is applied across the whole set of available machines. T
ble 10 shows another view of distributed processing usiegwo
methods (document-distributed and pipelining using thepib
cate 100" approach). To construct the table, fractiondkectibns
were indexed on subsets of the processors, and query ttpough
rates measured. (Note that, to avoid excessive index dibgil
we made one simplification to the pipelined system, and austé
building the index for each batch @b,000 queries based on the
“PastL:"” approach, we built a single index based on the workloads
measured in the first batch @b,000 queries, and then used that
term assignment for all five subsequent batches.)

Down the lead diagonal in each part of the table, data volume
grows in proportion to the number of processors, and in eéch o
those four experiments, each machine has a constant-sted s
index information to manage. Normalized throughput is tdyg
constant, indicating that the communications overheat ®ither
method is small.

Conversely, across the bottom row of each part of the table, a
fixed number of processors is used to index a growing totalsmno
of data, so that the amount handled on each machine also.grows
In these rows normalized throughput increases, showirtgotiha
single machine there are economies of scale to be obtaingatas
volumes increase. For very small collections (when eacle ihad
426/64 = 6.7 GB), the pipelined system outperforms the document-
distributed one, but at a relatively low normalized thropgtrate.

If the number of simultaneous query threads is increasgelipi
ing also gains a relative advantage. For example, vifdethreads
are active the throughput of the pipelined system in the=' 8,
1/1” entry of Table 10 rises t6.48 terabyte queries per machine
second, compared with42 for the document-distributed system.

Moving in the other direction, it is then interesting to splate
as to which factors become important as data volumes anégroc
sor numbers increase beyond the levels at which we are able to
experiment. We do this via a two-stage “thought experimeint”
which we first suppose thdd times as much datal 3 TB rather

Processing When data volume increasé8-fold

When data volume increas&60-fold, andk increased 0-fold

Each node has0 times as many documents, and node
response takel) times longer. Unnormalized throughput

drops by a factor o10; normalized throughput is unchanged. drops by a factor 010; normalized throughput is unchanged.
Receptionist handlek/10 as many queries, and spends the Receptionist handlek/10 as many queries, but spent$

mode

Doc- Each node has0 times as many documents, and node

distributed response takeB) times longer. Unnormalized throughput
same time on each one. Network traffic also drops by a
of 10. Summary: query response time<20, normalized
throughput =x 1.

Pipelined Each node ha$ times as much index data for the same

number of terms, so node processing times increase by a

factor of 10. Unnormalized throughput drops by a factor
10; normalized throughput is unchanged. Receptionist

factdimes longer on each one. Network traffic is unchanged.
Summary: query responsex10, normalized throughput =
x1.

Each node has00 times as much index data fay10 as

many terms, so node processing times increase by a factor of
100. Unnormalized throughput drops by a factor16f
normalized throughput is unchanged. Receptionist handles

of

handlesl /10 as many queries, and spends the same time onl /10 as many queries, and spends the same time on each one.
each one. If query package size grow linearly with collectio If query packages grow linearly with collection size, netiwo

size, network traffic is unchanged. Summary: query res
= x 10, normalized throughput x1.

ponsteaffic increases by a factor @f). Summary: query response
= x 100, normalized throughput x 1.

Table 9: Scalability options: in the first column, data volume alosexssumed to increase by a factorl6f in the second column an
additional 10-fold growth in data volume1(0-fold in total) is coupled with a simultaneou$-fold increase in the number of processing
nodes. Note that query response time estimates assumbelststem is not operating at peak throughput.

S Total collection size
trategy 8

174 12 11
Document-distributed
k=1 5.89 - - -
k=2 - 5.81 - -
k=4 - - 5.86 -
k=28 3.19 435 522 575
Duplicate 100
k=1 5.89 - - -
k=2 - 5.96 - -
k=4 - - 5.69 -
k=28 4,07 450 491 524

Table 10: Query throughput on fractional collections and processor
subsets, witlB2 query threads active. Each value is the average
(over batches 2-6) of the normalized throughput, measuradits

of terabyte queries per machine second. Term assignmettig in
pipelined method were based on batch one alone, rather ligan t
immediately prior batch.

than 426 GB) is to be indexed on the sanke = 8 machines as
used in our experiments; and then, in a second stage of grtveth
another factor-oft0 increase in data, té3 TB, is accompanied by

a corresponding growth in processors, to make- 80. We sup-
pose throughout this discussion that the query mix is urgédn
and that users continue to expect the system to respond Wih a
of the r most highly ranked documents. In the sense of Table 10,
the two steps are represented as a further move to the ragtingt

at the bottom element in the last row, and then, in the sectap] s

a diagonal move down from that new point.

The question is this — what happens to overall query throughp
rates? Are there aspects of either document-distributpgbelined
systems that become problematic? Table 9 summarizes dafsel
in this regard, and highlights a key issue with the pipeliagd
proach — because queries are processed sequentially,isheoe
gain in response time to individual queries from paraltalisThat
is, when the data size grows by a factoriéfor 100, so too must
the response time to queries, regardless of how many parsess
are applied. This behavior is in contrast to the performaridae

document-distributed system, where adding more processaa
system has the benefit of reducing individual query resptimsss.

There is one important caveat to be added to this discusasizh,
that is to note that response times can only be low in eithetegy
if they are operating at less than their peak throughpusratéhen
any system is heavily loaded, with a queue of pending queries
the latency between initiation and completion of each quiei-
rectly proportional to the number of query threads that areils
taneously active, and inversely proportional to the unradized
throughput. That is, per-query response time is an unhedofo
cept in a maximally-loaded system taking inputs one-by-foom
a queue of waiting queries.

8. PREVIOUSWORK

There is a substantial literature on distribution methddast of
these papers concern document distribution. Harman et%81]
describe a document-distributed system that was sucdgsdéu
ployed in practice. Cahoon and McKinley [1996] and Cahoaal.et
[2000] found that increasing the number of nodes used to geana
a fixed-size collection can improve response, with dimiimigtre-
turns; however, increasing the number of nodes withouegming
the collection size leads to results that cannot be meaniggh-
terpreted, and that is the approach we have also taken hegyat-A
ticular issue with much of the previous experimentatiomét tdue
to the many non-linear properties of such systems, the hahay
collection size is increased is unknown.

Probably the best-known document-distributed system t&o
[Barroso et al., 2003], in which the a cluster of nodes mainsa
document-distributed index and other nodes store infdomauch
as the documents themselves. The document distributionde®
fast response time; replication of clusters provides Higbughput.

Some distribution methods can be categorized as hybrigslif
ing [Moffat et al., 2005] has already been described. Anoliye
brid method is that of Xi et al. [2002a,b], where each invetist is
broken intok fixed-size chunks and one chunk is held on each node.
A difficulty with this approach is that it has disadvantagesne
pared to both document distribution (where each node cdeiple
indexes a sub-collection, so processing can be node-edgand
term distribution (where the number of disk accesses ismii@d).
Whether there are advantages is unclear. Similar methcsesitwmn

architectures such as connection machines [Cringean, €980,
Stanfill, 1990] have the same issues.

Much of the literature on term-distributed methods cossidt
papers comparing the term- and document-distributed aphes.
Unfortunately, this literature is inconsistent. Usingfaial data,
Jeong and Omiecinski [1995] found in favor of document distr
bution. On real data, but only0 queries — insufficient to show
caching effects — MacFarlane et al. [2000] found the samdtres
However, Tomasic and Garcia-Molina [1996] found that iczpl
tion was needed for improvement in throughput. Contrauoictill
of these results, both Ribeiro-Neto and Barbosa [1998] zadlLB
et al. [2001] found that term distribution is superior.

However, much of the previous work is open to question. Arti-
ficial or small sets of data or queries are not likely to be mtaa
of real-world behavior, and simulations designed to edtntiane
must deal with a great many complex variables — includingpicar;
relativities of CPU speed, network bandwidth, network gettsk
properties, term skew, and query skew — if they are to bestaali
For example, such issues undermine the results of Cachaa et
[2004], who use simulation to compare distribution withlieg
tion, but neglect caching effects.

Hawking [1997], Melnik et al. [2001], and Lu and McKinley
[2003] have also contributed to the literature on disteoindex-
ing and querying.

9. CONCLUSION

We have explored ways in which the load issues associatéd wit
the pipelined distributed evaluation approach can be addck The
final mechanism involves a blend of advance workload estimat
judicious list replication, and adaptive workload monitgr. These
techniques increase the throughput of term-distributdebiimg by
30%. Nevertheless, local fluctuations in workload mean thehea
node in the network is less tha®0% busy, and while the final
throughput rates attained in our experiments remain tairgly
close to the rates achieved by an equivalent documentixdittd
computation, we did not succeed in beating document distrib
tion, despite the heavier CPU consumption of the latter.mApar-
tant conclusion of our investigation to date is thus thatudeent-
partitioning retains its leading position as the methodraiavhich
others must be judged.

Acknowledgment This work was supported by the Australian Re-
search Council. We also thank Microsoft Search fordloe/Q log.

References

C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Zivianistibuted
guery processing using partitioned inverted files. In G.aYey, editor,
Proc. String Processing and Information Retrieval Syrppges 10-20,
Laguna de San Rafael, Chile, November 2001. IEEE Computeeyo

L. A. Barroso, J. Dean, and U. Holzle. Web search for a plafle¢ Google
cluster architecturelEEE Micro, 23(2):22—-28, April 2003.

F. Cacheda, V. Plachouras, and | Ounis. Performance asalfdistributed
architectures to index one terabyte of text. In S. McDonald & Tait,
editors, Proc. ECIR European Conf. on IR Researgtages 395-408,
Sunderland, UK, April 2004. Springer-Verlag. LNCS volung9Z.

B. Cahoon and K. S. McKinley. Performance evaluation of & dis
tributed architecture for information retrieval. In H.fRei, D. Harman,
P. Schauble, and R. Wilkinson, editoRroc. Nineteenth Annual Inter-
national ACM SIGIR Conf. on Research and Development irrrirde
tion Retrieva) pages 110-118, Zurich, Switzerland, August 1996. ACM
Press, New York.

B. Cahoon, K. S. McKinley, and Z. Lu. Evaluating the perfonoe of dis-
tributed architectures for information retrieval usingamiety of work-
loads. ACM Transactions on Information Systeri8(1):1-43, January
2000.

J. K. Cringean, R. England, G. A. Manson, and P. Willett. Halréext
searching in serial files using a processor farm. In J. L.ckideditor,
Proc. Thirteenth Annual International ACM SIGIR Conf. onsBach
and Development in Information Retrieyglages 429-453, Brussels,
Belgium, September 1990. ACM Press, New York.

D. Harman, W. McCoy, R. Toense, and G. Candela. Prototypinigs-a
tributed information retrieval system using statisticahking. Informa-
tion Processing & Managemer27(5):449-460, 1991.

D. Hawking. Scalable text retrieval for large digital libes. In C. Thanos,
editor, Proc. European Conf. on Research and Advanced Technology fo
Digital Libraries, pages 127-145, Pisa, Italy, September 1997. Springer-
Verlag. LNCS volume 1324.

B. S. Jeong and E. Omiecinski. Inverted file partitioningesnbs in mul-
tiple disk systemsIEEE Transactions on Parallel and Distributed Sys-
tems 6(2):142-153, 1995.

N. Lester, A. Moffat, W. Webber, and J. Zobel. Space-limitadked query
evaluation using adaptive pruning. Broc. Sixth Int. Conf. on Web In-
formations Systempages 470-477, New York, November 2005. LNCS
3806, Springer.

Z. Lu and K. S. McKinley. Partial collection replication farformation
retrieval. Kluwer International Journal of Information Retrieyab(2):
159-198, 2003.

A. MacFarlane, J. A. McCann, and S. E. Robertson. Paralcheusing
partitioned inverted files. In P. de la Fuente, ediimc. String Process-
ing and Information Retrieval Symmpages 209-220, A Corufia, Spain,
September 2000. IEEE Computer Society Press, Los Alan@alifor-
nia.

S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Molina. Bnida dis-
tributed full-text index for the webACM Transactions on Information
Systemsl19(3):217-241, 2001.

A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. A pipadimrchitec-
ture for distributed text query evaluation. September 2@hmitted.

B. Ribeiro-Neto and R. Barbosa. Query performance for lggboupled
distributed digital libraries. In I. Witten, R. Akscyn, aikd M. Shipman
Ill, editors, Proc. ACM Digital Libraries pages 182-190, Pittsburgh,
Pennslyvania, June 1998. ACM Press, New York.

C. Stanfill. Partitioned posting files: a parallel invertelé Structure for
information retrieval. In J. L. Vidick, editofProc. Thirteenth Annual
International ACM SIGIR Conf. on Research and Developmetifor-
mation Retrieval pages 413-428, Brussels, Belgium, September 1990.
ACM Press, New York.

A. Tomasic and H. Garcia-Molina. Performance issues irridiged
shared-nothing information-retrieval systemmformation Processing
& Management32(6):647-665, 1996.

W. Webber and A. Moffat. In search of reliable retrieval evypents. In
J. Kay, A. Turpin, and R. Wilkinson, editor®roc. 10th Australasian
Document Computing Symposiupages 26—33, Sydney, Australia, De-
cember 2005. University of Sydney.

W. Xi, O. Sornil, and E. A. Fox. Hybrid partition inverted fiidor large-
scale digital libraries. IrProc. Digital Library: IT Opportunities and
Challenges in the New Millenniurpages 404—-418, Beijing, China, July
2002a. Beijing Library Press.

W. Xi, O. Sornil, M. Luo, and E. A. Fox. Hybrid partition invied files: Ex-
perimental validation. In M. Agosti and C. Thanos, editétsc. Euro-
pean Conf. on Research and Advanced Technology for Diglteties,
pages 422-431, Rome, Italy, September 2002b. Springése/etNCS
volume 2458.

